Performance Of Geopolymer Concrete Under Various Curing Conditions

2012 ◽  
Vol 2 (3) ◽  
pp. 178-180 ◽  
Author(s):  
Shankar H Sanni ◽  
◽  
Dr. R. B. Khadiranaikar Dr. R. B. Khadiranaikar
2020 ◽  
Vol 184 ◽  
pp. 01092
Author(s):  
M Niveditha ◽  
Srikanth Koniki

Geopolymer concrete is prepared by reacting silicate as well as aluminate consisting materials with a caustic activator. More often, waste materials such as GGBS, fly ash, slag from metal and iron production are used. Recent investigations adding new materials like Alccofine, which improves the properties of geopolymer concrete even at ambient temperature condition. This research paper presents a details literature survey on the durability properties of geopolymer concrete. Various research literatures are previewed on durability of geopolymer concrete with the addition of different supplementary cementious materials as their necessity is increasing due to insistent constituents. Past studies from the literature reviews suggested that replacement of cement with chemical and mineral admixtures enhanced the properties of strength and durability of concrete. The micro structures, Morphological structures by SEM, lower shrinkage, higher mechanical strengths, superior durability with environmental sustainability are observed. XRD studies shown enhanced polymerisation reaction which is responsible for development of strength. Elevated temperatures and Surface deterioration are controlled in GPC than OPC. Geopolymer concrete provides better resistance for specimens to chemical attack and also water absorption, sorptivity, porosity have good influence to the durability properties in ambient curing conditions compared to conventional concrete.


2014 ◽  
Vol 679 ◽  
pp. 20-24 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
Zarina Yahya ◽  
Muhammad Faheem Mohd Tahir ◽  
Kamarudin Hussin ◽  
Mohammed Binhussain ◽  
...  

This paper presents the mechanical properties of a lightweight geopolymer concrete synthesized by the alkali-activation of a fly ash source (FA) produced by mixing a paste of geopolymer with foam produced by using NCT Foam Generator. Two curing conditions are used, curing at room temperature and curing in an oven with a constant temperature which is 60 oC. Bulk density showed that fly ash-based geopolymer lightweight concrete is light with the density of 1225 kg/m3 - 1667 kg/m3 with an acceptable compressive strength of 17.60 MPa for the density of 1667 kg/m3.


Author(s):  
Arnaud Castel ◽  
Stephen Foster ◽  
Raymond Ian Gilbert

In reinforced concrete construction, deflection control is an important performance criterion for their serviceability. The aim of the research described in this paper is to assess the deformation of cracked reinforced geopolymer concrete beams under long term service loading. The geopolymer binder is Portland cement free, using 85% of low calcium fly ash, 15% of GGBFS (Ground Granulated Blast Furnace Slag) and a sodium silicate/sodium hydroxide based activator. Firstly, geopolymer concrete drying shrinkage and creep were measured. Different curing conditions at elevated temperature were used. All experimental results are compared to predictions made using the Eurocode 2. Secondly, geopolymer concrete beams were subjected to short time bending tests leading to concrete cracking (pre-cracking tests). Beams were then stored under sustained loading for a period of four months. Both deflection and cracks were monitored versus time. Results show that, providing an appropriate heat curing regime, geopolymer concrete creep is much lower than that observed for OPC concrete and predicted by the Eurocode 2. As a result, the time-dependent deflection of geopolymer concrete beams measured after 4 months under sustained loading was always significantly lower than that of traditional OPC concrete beams. All results are showing that the crack widths of geopolymer concrete beams are significantly smaller than those expected for OPC concrete beams according to fib model code 2010 for both short and long terms tests. It is concluded that low calcium fly ash-based geopolymer concrete is a promising option for precast applications.


Author(s):  
S. Nagajothi ◽  
S. Elavenil

AbstractGeopolymer concrete is a booming technology in the construction industry. Much research is occurring in geopolymer concrete, as it emits low carbon dioxide into the atmosphere, is eco-friendly material and is an alternative for cement. This research mainly focuses on the use of fly ash based geopolymer concrete in ambient curing conditions and the use of manufactured sand due to the scarcity of natural sand. Mainly studies have evolved on the workability, setting time and compressive strength by the effect of ground granulated blast furnace slag (GGBFS), manufactured sand (M-sand), alkaline activator solutions to binder ratio and the proportions of sodium silicate to sodium hydroxide (SS/SH) in geopolymer concrete and mortar. The experimental studies were carried out using nine geopolymer concrete mixes and the comparisons were made. The workability of concrete decreases by increasing the percentage of GGBFS, M-sand and the proportions of SS/SH whereas workability of concrete increases when increasing the alkaline liquid to binder ratio. The compressive strength of geopolymer mortar and concrete increases when the percentage of GGBFS and M-sand is increased, and it decreases by increasing the alkaline liquid content. There is no change in strength by decreasing the proportions of SS/SH.


Author(s):  
M.F. Nuruddin Nuruddin ◽  
A. Kusbiantoro Kusbiantoro ◽  
S. Qazi Qazi ◽  
M.S. Darmawan Darmawan ◽  
N.A. Husin Husin

Author(s):  
Khoa Tan Nguyen ◽  
Tuan Anh Le ◽  
An Thao Huynh ◽  
Namshik Ahn

Geopolymer concrete is known as an alternative to Portland cement, with low carbon dioxide emissions compared with the conventional building materials. In this research, the influence of curing conditions and alkali hydroxide were investigated, using curing temperatures between 40 to 100℃, curing times from 4 to 12 hours, and various types of hydroxide and concentrations of sodium hydroxide solution. Geopolymerization needs energy and time to occur, and higher curing temperatures resulted in larger compressive strength, while longer curing times resulted in higher compressive strength. At the same curing temperature, longer curing time resulted in a higher compressive strength because the longer curing time extends the chemical reaction. For geopolymer concrete, sodium hydroxide is a better property than potassium hydroxide, because the atomic size of sodium anion is smaller than potassium. Further, the strength of concrete increased when the concentration of sodium hydroxide increased. In conclusion, geopolymer concrete is suitable for traditional building materials. Finding renewable materials to satisfy the increasing demand for building structures will be the primary challenge in future.


Sign in / Sign up

Export Citation Format

Share Document