Influence of Composition Parameters, Curing Conditions and Salt Solutions on Geopolymer Concrete Properties.(Dept.C)

2021 ◽  
Vol 46 (2) ◽  
pp. 1-9
Author(s):  
Khaled El-Sayed ◽  
Mohamed Makhlouf ◽  
Mostafa El-kady
2012 ◽  
Vol 2 (3) ◽  
pp. 178-180 ◽  
Author(s):  
Shankar H Sanni ◽  
◽  
Dr. R. B. Khadiranaikar Dr. R. B. Khadiranaikar

Buildings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Gökhan Kaplan ◽  
Hasbi Yaprak ◽  
Selçuk Memiş ◽  
Abdoslam Alnkaa

The use of mineral admixtures and industrial waste as a replacement for Portland cement is recognized widely for its energy efficiency along with reduced CO2 emissions. The use of materials such as fly ash, blast-furnace slag or limestone powder in concrete production makes this process a sustainable one. This study explored a number of hardened concrete properties, such as compressive strength, ultrasonic pulse velocity, dynamic elasticity modulus, water absorption and depth of penetration under varying curing conditions having produced concrete samples using Portland cement (PC), slag cement (SC) and limestone cement (LC). The samples were produced at 0.63 and 0.70 w/c (water/cement) ratios. Hardened concrete samples were then cured under three conditions, namely standard (W), open air (A) and sealed plastic bag (B). Although it was found that the early-age strength of slag cement was lower, it was improved significantly on 90th day. In terms of the effect of curing conditions on compressive strength, cure W offered the highest compressive strength, as expected, while cure A offered slightly lower compressive strength levels. An increase in the w/c ratio was found to have a negative impact on pozzolanic reactions, which resulted in poor hardened concrete properties. Furthermore, carbonation effect was found to have positive effects on some of the concrete properties, and it was observed to have improved the depth of water penetration. Moreover, it was possible to estimate the compressive strength with high precision using artificial neural networks (ANN). The values of the slopes of the regression lines for training, validating and testing datasets were 0.9881, 0.9885 and 0.9776, respectively. This indicates the high accuracy of the developed model as well as a good correlation between the predicted compressive strength values and the experimental (measured) ones.


2020 ◽  
Vol 184 ◽  
pp. 01092
Author(s):  
M Niveditha ◽  
Srikanth Koniki

Geopolymer concrete is prepared by reacting silicate as well as aluminate consisting materials with a caustic activator. More often, waste materials such as GGBS, fly ash, slag from metal and iron production are used. Recent investigations adding new materials like Alccofine, which improves the properties of geopolymer concrete even at ambient temperature condition. This research paper presents a details literature survey on the durability properties of geopolymer concrete. Various research literatures are previewed on durability of geopolymer concrete with the addition of different supplementary cementious materials as their necessity is increasing due to insistent constituents. Past studies from the literature reviews suggested that replacement of cement with chemical and mineral admixtures enhanced the properties of strength and durability of concrete. The micro structures, Morphological structures by SEM, lower shrinkage, higher mechanical strengths, superior durability with environmental sustainability are observed. XRD studies shown enhanced polymerisation reaction which is responsible for development of strength. Elevated temperatures and Surface deterioration are controlled in GPC than OPC. Geopolymer concrete provides better resistance for specimens to chemical attack and also water absorption, sorptivity, porosity have good influence to the durability properties in ambient curing conditions compared to conventional concrete.


2014 ◽  
Vol 679 ◽  
pp. 20-24 ◽  
Author(s):  
Mohd Mustafa Al Bakri Abdullah ◽  
Zarina Yahya ◽  
Muhammad Faheem Mohd Tahir ◽  
Kamarudin Hussin ◽  
Mohammed Binhussain ◽  
...  

This paper presents the mechanical properties of a lightweight geopolymer concrete synthesized by the alkali-activation of a fly ash source (FA) produced by mixing a paste of geopolymer with foam produced by using NCT Foam Generator. Two curing conditions are used, curing at room temperature and curing in an oven with a constant temperature which is 60 oC. Bulk density showed that fly ash-based geopolymer lightweight concrete is light with the density of 1225 kg/m3 - 1667 kg/m3 with an acceptable compressive strength of 17.60 MPa for the density of 1667 kg/m3.


Author(s):  
Arnaud Castel ◽  
Stephen Foster ◽  
Raymond Ian Gilbert

In reinforced concrete construction, deflection control is an important performance criterion for their serviceability. The aim of the research described in this paper is to assess the deformation of cracked reinforced geopolymer concrete beams under long term service loading. The geopolymer binder is Portland cement free, using 85% of low calcium fly ash, 15% of GGBFS (Ground Granulated Blast Furnace Slag) and a sodium silicate/sodium hydroxide based activator. Firstly, geopolymer concrete drying shrinkage and creep were measured. Different curing conditions at elevated temperature were used. All experimental results are compared to predictions made using the Eurocode 2. Secondly, geopolymer concrete beams were subjected to short time bending tests leading to concrete cracking (pre-cracking tests). Beams were then stored under sustained loading for a period of four months. Both deflection and cracks were monitored versus time. Results show that, providing an appropriate heat curing regime, geopolymer concrete creep is much lower than that observed for OPC concrete and predicted by the Eurocode 2. As a result, the time-dependent deflection of geopolymer concrete beams measured after 4 months under sustained loading was always significantly lower than that of traditional OPC concrete beams. All results are showing that the crack widths of geopolymer concrete beams are significantly smaller than those expected for OPC concrete beams according to fib model code 2010 for both short and long terms tests. It is concluded that low calcium fly ash-based geopolymer concrete is a promising option for precast applications.


Author(s):  
M M A B Abdullah ◽  
M F M Tahir ◽  
M A F M A Tajudin ◽  
J J Ekaputri ◽  
R Bayuaji ◽  
...  

Author(s):  
S. Nagajothi ◽  
S. Elavenil

AbstractGeopolymer concrete is a booming technology in the construction industry. Much research is occurring in geopolymer concrete, as it emits low carbon dioxide into the atmosphere, is eco-friendly material and is an alternative for cement. This research mainly focuses on the use of fly ash based geopolymer concrete in ambient curing conditions and the use of manufactured sand due to the scarcity of natural sand. Mainly studies have evolved on the workability, setting time and compressive strength by the effect of ground granulated blast furnace slag (GGBFS), manufactured sand (M-sand), alkaline activator solutions to binder ratio and the proportions of sodium silicate to sodium hydroxide (SS/SH) in geopolymer concrete and mortar. The experimental studies were carried out using nine geopolymer concrete mixes and the comparisons were made. The workability of concrete decreases by increasing the percentage of GGBFS, M-sand and the proportions of SS/SH whereas workability of concrete increases when increasing the alkaline liquid to binder ratio. The compressive strength of geopolymer mortar and concrete increases when the percentage of GGBFS and M-sand is increased, and it decreases by increasing the alkaline liquid content. There is no change in strength by decreasing the proportions of SS/SH.


Author(s):  
M.F. Nuruddin Nuruddin ◽  
A. Kusbiantoro Kusbiantoro ◽  
S. Qazi Qazi ◽  
M.S. Darmawan Darmawan ◽  
N.A. Husin Husin

Sign in / Sign up

Export Citation Format

Share Document