Municipal Solid Waste (MSW) Organic Fraction to Energy. Cuban Case Study. Brief Considerations

2016 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
Oscar Cabeza ◽  
◽  
Alfredo Alonso ◽  
Yoel Lastre ◽  
Jorge Medina ◽  
...  
2021 ◽  
Vol 1 (3) ◽  
pp. 1-8
Author(s):  
Ravikiran Shet ◽  
Srikanth Mutnuri

India generates 0.15 million metric tons (MT) of solid waste per day out of which more than 80% is organic fraction. Apart from this, 38% of the households use septic tanks where proper disposal of faecal sludge is also need of the hour. Anaerobic co-digestion (ACD) of two different substrates has positive potential towards solving this problem. In the present study, ACD of organic fraction of municipal solid waste (OFMSW) and septage solids (SS) was studied at three different levels, i.e., lab-scale, pilot-scale (1 m3), and full scale- capacity (325 m3). A loading rate of 1.5 kg VS/m3 was selected. The bio-methanation potential (BMP) assay showed a maximum biogas generation, i.e., 120±20.6 mL/gmVS with 68% maximum methane concentration at a 5:1 OFMSW and SS ratio. Cumulative biogas production after 30 days was 1.6 L/gmVS. The ultimate biogas production in the pilot-scale plant was 1000±100.5 L/day with 71% methane. The plant was also efficient in removing 87% of COD and 61% of VS. The full-scale anaerobic digester was set up at Mormugao Municpal Council, Goa India wherein the objective was to co-digest OFMSW and SS. This digester showed a similar removal pattern like earlier studies i.e., 94% and 45% COD and VS removal, respectively. The average methane content of the biogas was 68%. Full-scale operation of the anaerobic digester did not show any operational problems at the chosen co-digestion conditions.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
José A. L. Santos ◽  
M. Teresa Cesário ◽  
...  

AbstractThe management of municipal solid waste is a major logistic and environmental problem worldwide. Nonetheless, the organic fraction of municipal solid waste (OFMSW) is a valuable source of nutrients which can be used for a variety of purposes, according to the Circular Economy paradigm. Among the possible applications, the bioproduction of a biodegradable polyester, poly(3-hydroxybutyrate) [P(3HB)], using OFMSW as carbon platform is a promising strategy. Here, an economic and environmental assessment of bacterial P(3HB) production from OFMSW is presented based on previously published results. The SuperPro Designer® software was used to simulate P(3HB) production under our experimental parameters. Two scenarios were proposed depending on the fermentation medium: (1) enzymatic hydrolysate of OFMSW supplemented with glucose and plum waste juice; and (2) basal medium supplemented with glucose and plum waste juice. According to our results, both scenarios are not economically feasible under our experimental parameters. In Scenario 1, the low fermentation yield, the cost of the enzymes, the labour cost and the energy consumption are the factors that most contribute to that result. In Scenario 2, the cost of the extraction solvent and the low fermentation yield are the most limiting factors. The possibility of using process waste as raw material for the generation of other products must be investigated to enhance economic feasibility. From an environmental viewpoint, the photochemical oxidation potential (derived from the use of anisole as extraction solvent) and the generation of acid rain and global warming effect (caused by the burning of fuels for power generation) are the most relevant impacts associated to P(3HB) production under our experimental parameters.


2021 ◽  
pp. 0734242X2110134
Author(s):  
Rasangika Thathsaranee Weligama Thuppahige ◽  
Sandhya Babel

The management of organic fraction of municipal solid waste (OFMSW) has continued to be a significant challenge in Sri Lanka. Anaerobic digestion is one of the management options of OFMSW. However, it generates unavoidable environmental impacts that should be addressed. The present study focuses to assess the environmental impact of a full-scale anaerobic digestion plant in Sri Lanka from a life cycle perspective. The inventory data were obtained from direct interviews and field measurements. Environmental burdens were found to be in terms of global warming potential (230 kg CO2 eq) ozone formation on human health (6.15 × 10−6 kg NO x eq), freshwater eutrophication (2.92 × 10−3 kg P eq), freshwater ecotoxicity (9.27 × 10−5 kg 1,4 DCB eq), human carcinogenic toxicity (3.98 × 10−4 kg 1,4 DCB eq), land use (1.32 × 10−4 m2 a crop eq) and water consumption (2.23 × 10−2 m3). The stratospheric ozone depletion, fine particulate matter formation, ozone formation on terrestrial ecosystems, terrestrial acidification, marine eutrophication, ecotoxicity (terrestrial and marine), human non-carcinogenic toxicity, mineral resource scarcity and fossil resource scarcity, were avoided due to electricity production. Results show that the direct gaseous emissions and digestate generation should be addressed in order to reduce the burdens from the anaerobic digestion plant. Finally, the results of the study could help in policy formation and decision-making in selecting future waste management systems in Sri Lanka.


Sign in / Sign up

Export Citation Format

Share Document