scholarly journals MHD mixed convection flow in a vertical lid-driven square enclosure including a heat conducting horizontal circular cylinder with Joule heating

2010 ◽  
Vol 15 (2) ◽  
pp. 199-211 ◽  
Author(s):  
M. M. Rahman ◽  
M. A. Alim

In the present numerical investigation we studied the effect of magnetohydrodynamic (MHD) mixed convection flow in a vertical lid-driven square enclosure including a heat conducting horizontal circular cylinder with Joule heating. The governing equations along with appropriate boundary conditions for the present problem are first transformed into a non-dimensional form and the resulting non linear system of partial differential equations are then solved numerically using Galerkin’s finite element method. Parametric studies of the fluid flow and heat transfer in the enclosure are performed for magnetic parameter (Hartmann number) Ha, Joule heating parameter J, Reynolds number Re and Richardson number Ri. The streamlines, isotherms, average Nusselt number at the hot wall and average temperature of the fluid in the enclosure are presented for the parameters. The numerical results indicated that the Hartmann number, Reynolds number and Richardson number have strong influence on the streamlines and isotherms. On the other hand, Joule heating parameter has little effect on the streamline and isotherm plots. Finally, the mentioned parameters have significant effect on average Nusselt number at the hot wall and average temperature of the fluid in the enclosure.

2009 ◽  
Vol 1 (3) ◽  
pp. 461-472 ◽  
Author(s):  
M. M. Rahman ◽  
M. A. Alim ◽  
M. K. Chowdhury

In the present paper, a study of magnetohydrodynamic (MHD) mixed convection around a heat conducting horizontal circular cylinder placed at the center of a rectangular cavity along with joule heating has been carried out. Steady state heat transfer by laminar mixed convection has been studied numerically by solving the equations of mass, momentum and energy to determine the fluid flow and heat transfer characteristics in the cavity as a function of Richardson number, Hartmann number and the cavity aspect ratio. The results are presented in the form of average Nusselt number at the heated surface; average fluid temperature in the cavity and temperature at the cylinder center for the range of Richardson number, Hartmann number and aspect ratio. The streamlines and isotherms are also presented. It is found that the streamlines, isotherms, average Nusselt number, average fluid temperature and dimensionless temperature at the cylinder center strongly depend on the Richardson number, Hartmann number and the cavity aspect ratio.Keywords: Mixed convection; Finite element method; Cylinder diameter; Lid-driven cavity; Hartmann number. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i3.2597               J. Sci. Res. 1 (3), 461-472 (2009) 


2015 ◽  
Vol 789-790 ◽  
pp. 282-286 ◽  
Author(s):  
Khalil Khanafer ◽  
M. El Haj Assad

Mixed convection flow and heat transfer characteristics in a lid-driven cavity with two isothermally heated circular cylinders inside are studied numerically using a finite element formulation based on the Galerkin method of weighted residuals. The top lid of the cavity is moving rightwards with a constant speed. The two cylinders are maintained at an isothermal hot temperature, while the walls of the cavity are maintained at a cold temperature. Comparisons of streamlines, isotherms and average Nusselt number are presented to show the impact of the Richardson number, non-dimensional radius of the cylinder, and the location of the cylinders on the transport phenomena within the cavity. The results of this investigation show that the presence of the cylinders results in an increase in the average Nusselt number compared with a case with no cylinder. The average Nusselt number increases with an increase in the Richardson number for all non-dimensional radius of the cylinder studied in this work. It is seen that changing the boundary condition on one of the cylinders from isothermal to adiabatic has minimal effect on the average Nusselt number around the walls of the cavity.


2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2503-2514 ◽  
Author(s):  
Esfe Hemmat ◽  
Arani Abbasian ◽  
Wei-Mon Yan ◽  
Alireza Aghaie ◽  
Masoud Afrand ◽  
...  

The present study aims to evaluate the mixed convection flow and heat transfer of functionalized DWCNT/water nanofluids with variable properties in a cavity having hot baffles. The investigation is performed at different nanoparticles volume fraction including 0, 0.0002, 0.001, 0.002, and 0.004, Richardson numbers ranging from 0.01 to 100, inclination angles ranging from 0 to 60? and at constant Grashof number of 104. The results presented as streamlines and isotherms plot and Nusselt number diagrams. According to the finding with increasing nanoparticles volume fraction and distance between the left hot baffles of nanoparticles average Nusselt number enhances for all considered Richardson numbers and cavity inclination angles. Also with increasing Richardson number, the rate of changes of average Nusselt number increase with increasing distance between the left hot baffles. For example, at Richardson number of 0.01, by increasing L1 from 0.4 to 0.6, the average Nusselt number increases 7%; while for similar situation at Richardson number of 0.1, 1.0, and 10, the average Nusselt number increases, respectively, 17%, 24%, and 26%. At all Richardson numbers, the maximum value of average Nusselt number is achieved for a minimum length of left baffles. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/TSCI190203032E">10.2298/TSCI190203032E</a><u></b></font>


2019 ◽  
Vol 97 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Mubbashar Nazeer ◽  
N. Ali ◽  
Tariq Javed

The present article explores the effects of moving lid on the forced convection flow of micropolar fluid inside a right-angle triangular cavity saturated with porous medium. The base and hypotenuse or inclined sides of the cavity are maintained at constant temperatures, while the vertical side of the enclosure is adiabatic and moving with constant velocity in upward or downward direction. The flow equations are simulated by using the robust finite element numerical technique. The pressure term from the momentum equations is eliminated by using the penalty parameter. For a consistent solution, the value of the penalty parameter is selected as 107. The simulations are performed for the cases based on the direction of moving lid. The numerical outcomes are shown in terms of streamlines, temperature contours, and local and average Nusselt numbers for sundry parameters, such as micropolar parameter, Reynolds number, Richardson number, Darcy number, Hartmann number, and Prandtl number. It is observed that the shape of the inner circulating cell is elliptic when the lid is moving in the upward direction and fluid is clear (Newtonian fluid). It is also found that average Nusselt number in both cases increases with increasing Prandtl number, Richardson number, micropolar parameter, and Darcy number, whereas it decreases with increasing Hartmann number. Further, it achieves a maximum when the lid is moving in the downward direction, regardless of the choice of involved parameters. The numerical code is also validated with previous published results. The investigation of the current study is beneficial in porous heat exchangers, construction of triangular-shaped solar collectors, rigid crystal, polymeric fluid transport, etc.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saeed Islam ◽  
Arshad Khan ◽  
Poom Kumam ◽  
Hussam Alrabaiah ◽  
Zahir Shah ◽  
...  

Abstract This work analyses thermal effect for a mixed convection flow of Maxwell nanofluid spinning motion produced by rotating and bidirectional stretching cylinder. Impacts of Joule heating and internal heat source/sink are also taken into account for current investigation. Moreover, the flow is exposed to a uniform magnetic field with convective boundary conditions. The modeled equations are converted to set of ODEs through group of similar variables and are then solved by using semi analytical technique HAM. It is observed in this study that, velocity grows up with enhancing values of Maxwell, mixed convection parameters and reduces with growing values of magnetic parameter. Temperature jumps up with increasing values of heat source, Eckert number, Brownian motion,thermophoresis parameter and jumps down with growing values of Prandtl number and heat sink. The concentration is a growing function of thermophoresis parameter and a reducing function of Brownian motion and Schmidt number.


Sign in / Sign up

Export Citation Format

Share Document