scholarly journals Global dynamics for a class of infection-age model with nonlinear incidence

2018 ◽  
Vol 24 (1) ◽  
pp. 47-72 ◽  
Author(s):  
Yuji Li ◽  
Rui Xu ◽  
Jiazhe Lin

In this paper, we propose an HBV viral infection model with continuous age structure and nonlinear incidence rate. Asymptotic smoothness of the semi-flow generated by the model is studied. Then we caculate the basic reproduction number and prove that it is a sharp threshold determining whether the infection dies out or not. We give a rigorous mathematical analysis on uniform persistence by reformulating the system as a system of Volterra integral equations. The global dynamics of the model is established by using suitable Lyapunov functionals and LaSalle's invariance principle. We further investigate the global behaviors of the HBV viral infection model with saturation incidence through numerical simulations.

2018 ◽  
Vol 11 (05) ◽  
pp. 1850065 ◽  
Author(s):  
Khalid Hattaf ◽  
Yu Yang

In this paper, we propose an age-structured viral infection model with general incidence function that takes account of the loss of viral particles due to their absorption into susceptible cells. The proposed model is described by partial differential and ordinary differential equations. We first show that the model is mathematically and biologically well-posed. Furthermore, the uniform persistence and the global behavior of the model are investigated. Moreover, the age-structured models and results presented in many previous studies are improved and generalized.


2015 ◽  
Vol 09 (01) ◽  
pp. 1650007 ◽  
Author(s):  
Jinliang Wang ◽  
Xinxin Tian ◽  
Xia Wang

In this paper, the sharp threshold properties of a (2n + 1)-dimensional delayed viral infection model are investigated. This model combines with n classes of uninfected target cells, n classes of infected cells and nonlinear incidence rate h(x, v). Two kinds of distributed time delays are incorporated into the model to describe the time needed for infection of uninfected target cells and virus replication. Under certain conditions, it is shown that the basic reproduction number is a threshold parameter for the existence of the equilibria, uniform persistence, as well as for global stability of the equilibria of the model.


Sign in / Sign up

Export Citation Format

Share Document