scholarly journals Pengembangan Metode In-House HLA-Typing Gen HLA Kelas I (HLA A, HLA B, dan HLA C) Menggunakan Next Generation Sequencing Illumina MiSeq

2015 ◽  
Vol 47 (3) ◽  
pp. 152-159
Author(s):  
Rika Yuliwulandari ◽  
Kinasih Prayuni ◽  
Kenconoviyati ◽  
R. W. Susilowati ◽  
Abdul Salam M. Sofro
2019 ◽  
Vol 80 ◽  
pp. 80
Author(s):  
Ibis T. Hernandez ◽  
Jennifer McCue ◽  
Ana Hernandez ◽  
Ozzarah Ferrer ◽  
Maria Reiger ◽  
...  

2020 ◽  
Vol 106 (6) ◽  
pp. 510-517
Author(s):  
Sinem Yalcintepe ◽  
Hakan Gurkan ◽  
Selma Demir ◽  
Hilmi Tozkir ◽  
Huseyin Ahmet Tezel ◽  
...  

Background: Recent advances in next-generation sequencing (NGS) technology have enabled multigene testing and changed the diagnostic approach to hereditary gastrointestinal cancer/polyposis syndromes. The aim of this study was to analyze different cancer predisposition genes in hereditary/sporadic gastrointestinal cancer/polyposis. Methods: Cancer predisposition genes were analyzed with an Illumina MiSeq NGS system in 80 patients with gastrointestinal cancer/polyposis who were examined between the years 2016 and 2019. Deletion/duplication analysis of MLH1, MSH2, and EPCAM genes was performed by using the multiplex ligation-dependent probe amplification method. Results: Germline testing of hereditary cancer-related genes was performed in 80 patients with gastrointestinal cancer/polyposis. A total of 30 variants in 30 cases (37.5%) were assessed as pathogenic/likely pathogenic. A total of 19 heterozygous variants were assessed as variants of uncertain clinical significance in 17 cases (21.25%) and 18 (22.5%) novel variations (9 pathogenic/likely pathogenic, 9 variants of uncertain significance) were determined. In 4 (5%) cases, multiplex ligation-dependent probe amplification detected deletions in MLH1, MSH2, and EPCAM genes. Conclusion: The accumulation of analyses with multigene testing will increase the available data for cancer predisposition genes in hereditary gastrointestinal cancer/polyposis. Educational campaigns for prevention, efficient screening programs, and more personalized care based on the profile of individual patients are necessary.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rajib Majumder ◽  
Brodie Sutcliffe ◽  
Phillip W. Taylor ◽  
Toni A. Chapman

Abstract Insects typically host substantial microbial communities (the ‘microbiome’) that can serve as a vital source of nutrients and also acts as a modulator of immune function. While recent studies have shown that diet is an important influence on the gut microbiome, very little is known about the dynamics underpinning microbial acquisition from natural food sources. Here, we addressed this gap by comparing the microbiome of larvae of the polyphagous fruit fly Bactrocera tryoni (‘Queensland fruit fly’) that were collected from five different fruit types (sapodilla [from two different localities], hog plum, pomegranate, green apple, and quince) from North-east to South-east Australia. Using Next-Generation Sequencing on the Illumina MiSeq platform, we addressed two questions: (1) what bacterial communities are available to B. tryoni larvae from different host fruit; and (2) how does the microbiome vary between B. tryoni larvae and its host fruit? The abundant bacterial taxa were similar for B. tryoni larvae from different fruit despite significant differences in the overall microbial community compositions. Our study suggests that the bacterial community structure of B. tryoni larvae is related less to the host fruit (diet) microbiome and more to vertical transfer of the microbiome during egg laying. Our findings also suggest that geographic location may play a quite limited role in structuring of larval microbiomes. This is the first study to use Next-Generation Sequencing to analyze the microbiome of B. tryoni larvae together with the host fruit, an approach that has enabled greatly increased resolution of relationships between the insect’s microbiome and that of the surrounding host tissues.


2016 ◽  
Vol 54 (2) ◽  
pp. 98-104
Author(s):  
C. Lucan ◽  
Laura-Ancuta Pop ◽  
A. Florian ◽  
Valentina Pileczki ◽  
B. Petrushev ◽  
...  

Abstract From an oncological perspective, the second most common malignancies in children are brain tumors. Despite the recent therapeutic breakthroughs in this field, concerning surgery, radiotherapy and chemotherapy alike, some cases still have poor outcomes in curability. This is especially the case in patients with high-risk histological types of tumors, and those suffering from residual, remitting and disseminated diseases. Due to the unique neuroanatomical emplacement of brain tumors and their aggressive infiltrative behavior, their total removal remains a demanding task. This can be perceived in the high rates of failure treatment and disease recurrence. Furthermore, the adjacent healthy brain tissue is inevitably damaged in the surgical process of effectively removing these tumors. Thus, stem cell transplantation may be a viable solution for the clinical management of these malignancies, as proven by various recent breakthroughs. In the current concise review, we present the role of next generation sequencing in HLA typing for stem cell transplantation in primary CNS pediatric malignancies.


BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel L Erlich ◽  
Xiaoming Jia ◽  
Scott Anderson ◽  
Eric Banks ◽  
Xiaojiang Gao ◽  
...  

2015 ◽  
Vol 76 ◽  
pp. 165
Author(s):  
Hayley Hogan ◽  
Rhys Cransberg ◽  
Megan Jordan ◽  
Damian Goodridge ◽  
David Sayer

Sign in / Sign up

Export Citation Format

Share Document