Arsenic binding proteins in cardiovascular human tissues

2021 ◽  
Vol 14 (5) ◽  
pp. 137-143
Author(s):  
Isabel Pizarro Veas
IUBMB Life ◽  
1997 ◽  
Vol 41 (6) ◽  
pp. 1143-1151 ◽  
Author(s):  
V.Yu. Kanevsky ◽  
L. P. Pozdnyakova ◽  
O. A. Aksenova ◽  
S. E. Severin ◽  
V.Yu. Katukov ◽  
...  

Author(s):  
Shulin Wen ◽  
Jingwei Feng ◽  
A. Krajewski ◽  
A. Ravaglioli

Hydroxyapatite bioceramics has attracted many material scientists as it is the main constituent of the bone and the teeth in human body. The synthesis of the bioceramics has been performed for years. Nowadays, the synthetic work is not only focused on the hydroapatite but also on the fluorapatite and chlorapatite bioceramics since later materials have also biological compatibility with human tissues; and they may also be very promising for clinic purpose. However, in comparison of the synthetic bioceramics with natural one on microstructure, a great differences were observed according to our previous results. We have investigated these differences further in this work since they are very important to appraise the synthetic bioceramics for their clinic application.The synthetic hydroxyapatite and chlorapatite were prepared according to A. Krajewski and A. Ravaglioli and their recent work. The briquettes from different hydroxyapatite or chlorapatite powders were fired in a laboratory furnace at the temperature of 900-1300°C. The samples of human enamel selected for the comparison with synthetic bioceramics were from Chinese adult teeth.


Author(s):  
J. Jakana ◽  
M.F. Schmid ◽  
P. Matsudaira ◽  
W. Chiu

Actin is a protein found in all eukaryotic cells. In its polymerized form, the cells use it for motility, cytokinesis and for cytoskeletal support. An example of this latter class is the actin bundle in the acrosomal process from the Limulus sperm. The different functions actin performs seem to arise from its interaction with the actin binding proteins. A 3-dimensional structure of this macromolecular assembly is essential to provide a structural basis for understanding this interaction in relationship to its development and functions.


Author(s):  
J. C. Fanning ◽  
J. F. White ◽  
R. Polewski ◽  
E. G. Cleary

Elastic tissue is an important component of the walls of arteries and veins, of skin, of the lungs and in lesser amounts, of many other tissues. It is responsible for the rubber-like properties of the arteries and for the normal texture of young skin. It undergoes changes in a number of important diseases such as atherosclerosis and emphysema and on exposure of skin to sunlight.We have recently described methods for the localizationof elastic tissue components in normal animal and human tissues. In the study of developing and diseased tissues it is often not possible to obtain samples which have been optimally prepared for immuno-electron microscopy. Sometimes there is also a need to examine retrospectively samples collected some years previously. We have therefore developed modifications to our published methods to allow examination of human and animal tissue samples obtained at surgery or during post mortem which have subsequently been: 1. stored frozen at -35° or -70°C for biochemical examination; 2.


Sign in / Sign up

Export Citation Format

Share Document