scholarly journals Low-dose computerized tomography in lung cancer screening

2019 ◽  
Vol 6 (4) ◽  
pp. 87-89
Author(s):  
Ruangrong Cheepsattayakorn

Lung cancer screening has been a passionately debated topic since the late 1990s. Five-year survival is 53.5 %, 26.1 %, and 3.9 % when cancer is confined to the lung at the time of diagnosis, when there is regional nodal involvement, and when there is distant metastasis, respectively. The goal of lung cancer screening (LCS) is to shift the timing of the diagnosis to an earlier point, thus, the disease is localized to the lung, and then appropriate treatment can reduce the mortality of lung cancer. Study results from several lung cancer screening trials worldwide, including the United States, Japan, the Netherlands, Denmark, and Italy demonstrated that low-dose computerized tomography (LDCT) scanner used in LCS can increase the detection rate of lung cancer at an earlier stage. At the time of screening, the information about smoking cessation should be provided to all current smokers, while the multidisciplinary clinic affords a second opportunity to counsel patients about the benefits of quitting smoking. After two rounds of screening, there are fewer false positives as a result of comparison with the baseline screening CT that may reveal two years of pulmonary nodule stability. Decreasing the number of false -positive lung cancer screens is an area for future research. Genetic profiles and the results of the baseline screening examination can potentiate further refining the risk modeling. Risk modeling could define the frequency of follow-up in addition to who should be screened. In conclusion, LCS with LDCT has shown that there are indolent lung cancers that may not be fatal. Further studies are urgently needed if the maximization of the risk-benefit ratio in LCS has to be achieved.

2019 ◽  
Vol 15 (7) ◽  
pp. e607-e615 ◽  
Author(s):  
Amy Copeland ◽  
Angela Criswell ◽  
Andrew Ciupek ◽  
Jennifer C. King

PURPOSE: The National Lung Screening Trial demonstrated a 20% relative reduction in lung cancer mortality with low-dose computed tomography screening, leading to implementation of lung cancer screening across the United States. The Centers for Medicare and Medicaid Services approved coverage, but questions remained about effectiveness of community-based screening. To assess screening implementation during the first full year of CMS coverage, we surveyed a nationwide network of lung cancer screening centers, comparing results from academic and nonacademic centers. METHODS: One hundred sixty-five lung cancer screening centers that have been designated Screening Centers of Excellence responded to a survey about their 2016 program data and practices. The survey included 21 pretested, closed- and open-ended quantitative and qualitative questions covering implementation, workflow, numbers of screening tests completed, and cancers diagnosed. RESULTS: Centers were predominantly community based (62%), with broad geographic distribution. In both community and academic centers, more than half of lung cancers were diagnosed at stage I or limited stage, demonstrating a clear stage shift compared with historical data. Lung-RADS results were also comparable. There are wide variations in the ways centers address Centers for Medicare and Medicaid Services requirements. The most significant barriers to screening implementation were insurance and billing issues, lack of provider referral, lack of patient awareness, and internal workflow challenges. CONCLUSION: These data validate that responsible screening can take place in a community setting and that lung cancers detected by low-dose computed tomography screening are often diagnosed at an early, more treatable stage. Lung cancer screening programs have developed different ways to address requirements, but many implementation challenges remain.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 6567-6567
Author(s):  
Derek Raghavan ◽  
Darcy L Doege ◽  
Mellisa S Wheeler ◽  
John D Doty ◽  
James Oliver ◽  
...  

6567 Background: The National Lung Screening Trial (NLST) demonstrated that screening high-risk patients with low-dose CT (LDCT) of the chest reduces lung cancer mortality compared to screening with chest x-ray. Uninsured and Medicaid patients lack access to this hospital-based screening test due to geographic isolation/socio-economic factors. We hypothesized that a mobile screening unit would improve access and confer benefits demonstrated by the NLST to this under-served group, which is most at risk of lung cancer deaths. Methods: In collaboration with Samsung Inc, we inserted a BodyTom portable 32 slide low-dose CT scanner into a 35-foot coach, reinforced to avoid equipment damage, to function as a mobile lung scanning unit. The unit includes a waiting area, high speed wireless internet connection for rapid image transfer, and electronic tablets to deliver smoking cessation and health education programs and shared decision-making video aids. It has been certified as a lung cancer screening Center of Excellence by Lung Cancer Alliance. We employed the LUNG RADS approach to lesion classification, yielding high sensitivity and specificity in assessment. All films were reviewed by a central panel of oncologists, pulmonologists and radiologists. The protocol was approved by Chesapeake IRB, which oversees all LCI cancer trials. Interim analysis at this time was approved by the Oversight Committee. Results: We screened 470 under-served smokers between 4/2017-1/2019; M:F 1.1:1, mean age 61 years (range 55-64), with average pack year history of 45.7 (30-150) (25% African-American; 3% Hispanic; 65% rural; 100% uninsured, under-insured or Medicaid - NC Medicaid does not cover lung cancer screening). Patients over the age of 64 years were excluded as they are covered by Medicare for lung cancer screening. We found at initial screen 35 subjects with LUNG RADS 4 lesions, 49 subjects with LUNG RADS 3 lesions, 10 lung cancers (2.1%), including 4 at stage I-II. 4 non-lung cancers were identified and treated. Other incidental non-oncologic findings are the subject of another presentation. Conclusions: In this small sample using the first mobile low dose CT lung screening unit in the United States, the initial cancer detection rate is comparable to that reported in the NLST but with marked improvement of screening rates in underserved groups and with better anticipated outcomes at lower cost than if they had first presented with metastatic disease.


Author(s):  
Stacey A Fedewa ◽  
Ella A Kazerooni ◽  
Jamie L Studts ◽  
Robert A Smith ◽  
Priti Bandi ◽  
...  

Abstract Background Annual lung cancer screening (LCS) with low-dose chest computed tomography in older current and former smokers (ie, eligible adults) has been recommended since 2013. Uptake has been slow and variable across the United States. We estimated the LCS rate and growth at the national and state level between 2016 and 2018. Methods The American College of Radiology’s Lung Cancer Screening Registry was used to capture screening events. Population-based surveys, the US Census, and cancer registry data were used to estimate the number of eligible adults and lung cancer mortality (ie, burden). Lung cancer screening rates (SRs) in eligible adults and screening rate ratios with 95% confidence intervals (CI) were used to measure changes by state and year. Results Nationally, the SR was steady between 2016 (3.3%, 95% CI = 3.3% to 3.7%) and 2017 (3.4%, 95% CI = 3.4% to 3.9%), increasing to 5.0% (95% CI = 5.0% to 5.7%) in 2018 (2018 vs 2016 SR ratio = 1.52, 95% CI = 1.51 to 1.62). In 2018, several southern states with a high lung-cancer burden (eg, Mississippi, West Virginia, and Arkansas) had relatively low SRs (<4%) among eligible adults, whereas several northeastern states with lower lung cancer burden (eg, Massachusetts, Vermont, and New Hampshire) had the highest SRs (12.8%-15.2%). The exception was Kentucky, which had the nation’s highest lung cancer mortality rate and one of the highest SRs (13.7%). Conclusions Fewer than 1 in 20 eligible adults received LCS nationally, and uptake varied widely across states. LCS rates were not aligned with lung cancer burden across states, except for Kentucky, which has supported comprehensive efforts to implement LCS.


Lung Cancer ◽  
2018 ◽  
Vol 117 ◽  
pp. 20-26 ◽  
Author(s):  
Wenjia Yang ◽  
Fangfei Qian ◽  
Jiajun Teng ◽  
Huimin Wang ◽  
Christian Manegold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document