scholarly journals Modeling and animation of spring dynamic absorber

Author(s):  
Mykola Ignatyshyn ◽  
Yaroslav Pelekh ◽  
Yaroslav Hlynsky ◽  
Bohdan Pakholok

The investigation of the action of the spring dynamic absorber, as well as the calculation of the physical quantities of the constructed model and animation, was carried out using non-linear methods of the Runge-Kutta type. Using only three references to the right-hand side of the differential equation, a method of the third order of accuracy is constructed, as well as two-sided approximations of the second order of accuracy. An explicit estimate of the error at each point of integration is given.

2019 ◽  
pp. 71-75
Author(s):  
M.I. Ayzatsky

The generalization of the transformation of the linear differential equation into a system of the first order equations is presented. The proposed transformation gives possibility to get new forms of the N-dimensional system of first order equations that can be useful for analysis of the solutions of the N-th-order differential equations. In particular, for the third-order linear equation the nonlinear second-order equation that plays the same role as the Riccati equation for second-order linear equation is obtained.


2019 ◽  
Vol 10 (4) ◽  
pp. 85-91
Author(s):  
Zh.B. Yeskabylova ◽  
◽  
K.N. Ospanov ◽  
T.N. Bekjan ◽  
◽  
...  

1920 ◽  
Vol 39 ◽  
pp. 21-24 ◽  
Author(s):  
Pierre Humbert

The polynomials which satisfy linear differential equations of the second order and of the hypergeometric type have been the object of extensive work, and very few properties of them remain now hidden; the student who seeks in that direction a subject for research is compelled to look, not after these functions themselves but after generalisations of them. Among these may be set in first place the polynomials connected with a differential equation of the third order and of the extended hypergeometric type, of which a general theory has been given by Goursat. The number of such polynomials of which properties have been studied in particular is rather small; in fact, Appell's polynomialsand Pincherle's polynomials, arising from the expansionsare, so far as I know, the only well-known ones. To show what can be done in these ways, I shall briefly give the definition and principal properties of some polynomials analogous to Pincherle's and of some allied functions.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2004 ◽  
Vol 1 (2) ◽  
pp. 340-346
Author(s):  
Baghdad Science Journal

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.


1988 ◽  
Vol 32 (02) ◽  
pp. 83-91
Author(s):  
X. M. Wang ◽  
M. L. Spaulding

A two-dimensional potential flow model is formulated to predict the wave field and forces generated by a sere!submerged body in forced heaving motion. The potential flow problem is solved on a boundary fitted coordinate system that deforms in response to the motion of the free surface and the heaving body. The full nonlinear kinematic and dynamic boundary conditions are used at the free surface. The governing equations and associated boundary conditions are solved by a second-order finite-difference technique based on the modified Euler method for the time domain and a successive overrelaxation (SOR) procedure for the spatial domain. A series of sensitivity studies of grid size and resolution, time step, free surface and body grid redistribution schemes, convergence criteria, and free surface body boundary condition specification was performed to investigate the computational characteristics of the model. The model was applied to predict the forces generated by the forced oscillation of a U-shaped cylinder. Numerical model predictions are generally in good agreement with the available second-order theories for the first-order pressure and force coefficients, but clearly show that the third-order terms are larger than the second-order terms when nonlinearity becomes important in the dimensionless frequency range 1≤ Fr≤ 2. The model results are in good agreement with the available experimental data and confirm the importance of the third order terms.


1967 ◽  
Vol 10 (5) ◽  
pp. 681-688 ◽  
Author(s):  
B.S. Lalli

The purpose of this paper is to obtain a set of sufficient conditions for “global asymptotic stability” of the trivial solution x = 0 of the differential equation1.1using a Lyapunov function which is substantially different from similar functions used in [2], [3] and [4], for similar differential equations. The functions f1, f2 and f3 are real - valued and are smooth enough to ensure the existence of the solutions of (1.1) on [0, ∞). The dot indicates differentiation with respect to t. We are taking a and b to be some positive parameters.


Sign in / Sign up

Export Citation Format

Share Document