Ni-, Co- and Pt-based nanocatalysts for hydrogen generation via hydrolysis of NaBH4

2021 ◽  
pp. 94-104
Author(s):  
V. Yartys ◽  
◽  
I. Zavaliy ◽  
A. Kytsya ◽  
V. Berezovets ◽  
...  

Ni-, Co- and Pt-based nanostructures were prepared via different physical-chemical methods and tested as the catalysts of hydrolysis of NaBH4. Ni-Co bimetallic nanoparticles with different Ni-Co ratios were synthesized by the modified polyol method via the reduction of in situ precipitated slurries of Ni and Co hydroxides by hydrazine in ethylene glycol solutions. It was found that a Ni- Co nanoparticles with the equal Ni/Co content and mean size of 130 nm are a more active catalyst as compared to Ni75Co25 and Ni25Co75 nanopowders and provide a constant rate of hydrogen evolution up to the full conversion of NaBH4. Zeolite supported Ni- and Co-based nanostructures (Ni-Z and Co-Z) as a convenient in use alternative to the metallic nanoparticles were synthesized via two-stage procedure consisted of adsorption of Ni2+ or Co2+ ions by zeolite from the aqueous solutions followed by the reduction of the adsorbed cations by NaBH4. Using SEM and EDX it was found that such method of synthesis provide the uniform distribution of 50 – 100 nm metallic nanopaticles both on the surface and in the bulk of the carrier due to the high cation-exchange capacity of the aluminosilicates. It was found that Co-Z catalyst is more active compared to Ni-Z and in studied conditions provides the H2 evolution rate close to 1450 mL/min per 1 g of precipitated metal. Various Pt-based nanocomposites were obtained by polyol synthesis and subsequently deposited on the carriers (carbon cloth or cordierite) as well as via a platinum electrodeposition on the titanium crump. It was found that the most efficient catalyst of the hydrolysis of NaBH4 is a cordierite-supported nanodispersed Pt which is able to maintain operation of a 30 W battery of fuel cells for 9-10 hours when using for the hydrolysis 1.1 L of 10 % NaBH4 solution.

2009 ◽  
Vol 86 (3-4) ◽  
pp. 137-144 ◽  
Author(s):  
Palanichamy Krishnan ◽  
Suresh G. Advani ◽  
Ajay K. Prasad

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1153 ◽  
Author(s):  
Aina Shasha Hashimi ◽  
Muhammad Amirul Nazhif Mohd Nohan ◽  
Siew Xian Chin ◽  
Poi Sim Khiew ◽  
Sarani Zakaria ◽  
...  

Hydrogen (H2) is a clean energy carrier which can help to solve environmental issues with the depletion of fossil fuels. Sodium borohydride (NaBH4) is a promising candidate material for solid state hydrogen storage due to its huge hydrogen storage capacity and nontoxicity. However, the hydrolysis of NaBH4 usually requires expensive noble metal catalysts for a high H2 generation rate (HGR). Here, we synthesized high-aspect ratio copper nanowires (CuNWs) using a hydrothermal method and used them as the catalyst for the hydrolysis of NaBH4 to produce H2. The catalytic H2 generation demonstrated that 0.1 ng of CuNWs could achieve the highest volume of H2 gas in 240 min. The as-prepared CuNWs exhibited remarkable catalytic performance: the HGR of this study (2.7 × 1010 mL min−1 g−1) is ~3.27 × 107 times higher than a previous study on a Cu-based catalyst. Furthermore, a low activation energy (Ea) of 42.48 kJ mol−1 was calculated. Next, the retreated CuNWs showed an outstanding and stable performance for five consecutive cycles. Moreover, consistent catalytic activity was observed when the same CuNWs strip was used for four consecutive weeks. Based on the results obtained, we have shown that CuNWs can be a plausible candidate for the replacement of a costly catalyst for H2 generation.


2019 ◽  
Vol 150 (2) ◽  
pp. 586-604 ◽  
Author(s):  
Komal N. Patil ◽  
Divya Prasad ◽  
Jayesh T. Bhanushali ◽  
Hern Kim ◽  
Amol B. Atar ◽  
...  

2018 ◽  
Vol 18 (7) ◽  
pp. 4714-4719 ◽  
Author(s):  
Abdullah M Al-Enizi ◽  
Robert M Brooks ◽  
M. M Ahmad ◽  
M. M El-Halwany ◽  
Mohamed H El-Newehy ◽  
...  

Author(s):  
Nurgul Kızıltas ◽  
Yasar Karatas ◽  
Mehmet Gulcan ◽  
Sibel Demiroglu Mustafov ◽  
Fatih Sen

RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34364-34371 ◽  
Author(s):  
Chengpeng Jiao ◽  
Zili Huang ◽  
Xiaofeng Wang ◽  
Haijun Zhang ◽  
Lilin Lu ◽  
...  

Alloyed Ni/Au/Co nanoparticles with negatively-charged Au, Co atoms, and positively-charged Ni atoms were prepared as effective catalysts for hydrolysis of NaBH4.


Sign in / Sign up

Export Citation Format

Share Document