scholarly journals Thermokinetic parameters of melt processing and structure formation of cast steel

2018 ◽  
Vol 88 (4) ◽  
pp. 9-18 ◽  
Author(s):  
S.Ye. Kondratyuk ◽  
◽  
Z.V. Parkhomchuk ◽  
V.I. Veis ◽  
◽  
...  
2021 ◽  
Vol 2021 (4) ◽  
pp. 28-35
Author(s):  
Stanislav Dorofeev ◽  
Aleksandr Voynov ◽  
Aleksey Goncharov ◽  
Nadezhda Slavinskaya ◽  
Kirill Doroshenko

To improve functional properties of pre-eutectic silumins there are used many different methods having a complex effect upon processes of structure formation and physical-mechanical properties of alloys. In this paper there is offered a method for alloy operation characteristics increase by the example of wear-resistance by the impact of nanosecond electro-magnetic pulses (NEMP) upon silumin melt AK7ch (AL9). Melt illumination was carried out with the generator (NEMP) (GNI-01-1-6) submersible rod radiator. The melt was overheated to 900ºC and processed with NEMP with the length up to 25 min after that it was cooled at a rate of 20ºC/min. Slow cooling contributed to the formation of a structure close to equilibrium. Cylindrical ingots with a diameter of 0.06 m (60mm) and a height of 0.06 m (60 mm) were obtained. Wear-resistance was defined on a cross cut of ingots according to GOST 23.208-79. As a standard of comparison were used non-irradiated samples of silumin. It is defined that melt NEMP processing changes considerably parameters of crystallization, structure formation and increases silumin properties. At abrasive wear, silumin wear-resistance changes from the duration of melt electro-pulse processing according to an extreme dependence with the evident maximum at melt irradiation in the course of 15 min. At that in the edge area of the ingot wear-resistance increases by 1.54 times, and in the central one – by 1.34 times. This effect is explained by the fact that during melt NEMP processing during 15 min the characteristics of alloy micro-structure change considerably: morphology and dimensions of structural constituents. At that there is formed a qualitatively new fine structure of a non-dendritic type which ensures maximum values of alloy wear-resistance. The data obtained allow developing technology of wear-resistant silumin fusion intended for operation under abrasive wear conditions.


Author(s):  
Jiang Xishan

This paper reports the growth step pattern and morphology at equilibrium and growth states of (Mn,Fe)S single crystal on the wall of micro-voids in ZG25 cast steel by using scanning electron microscope. Seldom report was presented on the growth morphology and steppattern of (Mn,Fe)S single crystal.Fig.1 shows the front half of the polyhedron of(Mn,Fe)S single crystal,its central area being the square crystal plane,the two pairs of hexagons symmetrically located in the high and low, the left and right with a certain, angle to the square crystal plane.According to the symmetrical relationship of crystal, it was defined that the (Mn,Fe)S single crystal at equilibrium state is tetrakaidecahedron consisted of eight hexagonal crystal planes and six square crystal planes. The macroscopic symmetry elements of the tetrakaidecahedron correpond to Oh—n3m symmetry class of fcc structure,in which the hexagonal crystal planes are the { 111 } crystal planes group,square crystal plaits are the { 100 } crystal planes group. This new discovery of the (Mn,Fe)S single crystal provides a typical example of the point group of Oh—n3m.


2018 ◽  
pp. 76-89
Author(s):  
E. M. Avraamova ◽  
V. N. Titov

The analysis of present-time directions in the study of social development has allowed to identify the resource approach as the most productive one which enables to assess social dynamics through the range of resource characteristics of different population groups and abilities of the relevant groups to apply development resources in the current economic and institutional conditions. Basing on the sociological survey conducted by ISAP RANEPA, the quantitative estimation of material and social recourses of the population has been made; integral values of the resource potential have been calculated as well. The issues of social structure formation are analyzed through the aspect of resource availability; the barriers of Russian middle-class enlargement are defined.


The authors' methodic for assessing the role of chemical and physic-chemical factors during the structure formation of gypsum stone is presented in the article. The methodic is also makes it possible to reveal the synergistic effect and to determine the ranges of variation of controls factors that ensure maximum values of such effect. The effect of a micro-sized modifier based on zinc hydro-silicates on the structure formation of building gypsum is analyzed and corresponding dependencies are found. It is shown that effects of influence of modifier on the properties of gypsum compositions are determined by chemical properties of modifier. Among the mentioned properties are sorption characteristics (which depend on the amount of silicic acid and its state) and physicochemical properties - the ability to act as a substrate during crystal formation. The proposed method can also be extended to other binding substances and materials. This article contributes to the understanding of the processes that occur during the structure formation of composites, which will make it possible to control the structure formation in the future, obtaining materials with a given set of properties.


The article presents the study of processes of structure formation of cement stone and products of hardening of organic-mineral compositions with fibrous filler (shavings) by the electronic scanning microscopy method. It is established that the additive-free cement stone at the age of 28 days has a dense and homogeneous structure, consists of calcium hydro-silicates, Portlandite and calcite - newgrowths characteristic for cement systems. Cellulose fibers, which make up the bulk of the substance of shavings, are sufficiently active, which determines the high adhesion of the hydration products of the cement binder to their surface. It is shown that the introduction of shavings into the organo-mineral composition leads to inhibition of cement hydration processes. Organo-mineral compositions with different shavings content (two compositions) were analyzed. The first composition is characterized by a fairly dense structure, the cement stone consists of globular nanoscale nuclei of hydrosilicates, Portlandite and calcite. The second composition has a loose porous structure, cement stone consists of non-hydrated cement grains, newgrowths are represented by calcite and vaterite. The structure of the contact zone "osprey fiber-cement stone" in the organo-mineral composition of the first composition indicates a good adhesion of the filler surface with the phases of hydrated cement. The use of shavings as a fibrous filler (the first composition) increases the tensile and bending strength, as well as the wear resistance of organo-mineral compositions. The data obtained by scanning electron microscopy are confirmed by the results of studying the processes of structure formation of cement stone by quantitative x-ray phase analysis.


2013 ◽  
Vol 0 (1) ◽  
pp. 122
Author(s):  
K. Toshtay ◽  
Kuanyshbek Mussabekov ◽  
S. Kumargaliyeva ◽  
С. Turganbay ◽  
Inal Bakhytkyzy

1986 ◽  
Vol 84 ◽  
Author(s):  
M.D. Merz ◽  
F. Gerber ◽  
R. Wang

AbstractThe Materials Characterization Center (MCC) at Pacific Northwest Lab- oratory is performing three kinds of corrosion tests for the Basalt Waste Isolation Project (BWIP) to establish the interlaboratory reproducibility and uncertainty of corrosion rates of container materials for high-level nuclear waste. The three types of corrosion tests were selected to address two distinct conditions that are expected in a repository constructed in basalt. An air/steam test is designed to address corrosion during the operational period and static pressure vessel and flowby tests are designed to address corrosion under conditions that bound the condi ring the post-closure period of the repository.The results of tests at reference testing conditions, which were defined to facilitate interlaboratory comparison of data, are presented. Data are reported for the BWIP/MCC-105.5 Air/Steam Test, BWIP/MCC-105.1 Static Pressure Vessel, and BWIP/MC-105.4 Flowby Test. In those cases where data are available from a second laboratory, a statistical analysis of interlaboratory results is reported and expected confidence intervals for mean corrosion rates are given. Other statistical treatment of data include analyses of the effects of vessel-to-vessel variations, test capsule variations for the flowby test, and oven-to-oven variations for air/steam tests.


2005 ◽  
Vol 17 (4) ◽  
pp. 343-371 ◽  
Author(s):  
S. Konovalova ◽  
I. S. Akhatov

Sign in / Sign up

Export Citation Format

Share Document