scholarly journals Methodical provisions on the distribution of total technological energy resources between separate types of outputs of multi-product manufacture

2020 ◽  
Vol 2020 (4) ◽  
pp. 58-62
Author(s):  
G.O. Kuts ◽  
◽  
O.I. Teslenko ◽  

The question of methodical approach to the distribution of total technological energy consumption between separate kinds of outputs of multi-product manufacture is considered. Such ferrous metallurgy industries include blast furnace process, oxygen, energy, and coke production. The theoretical basis of proposed methodological provisions is Hess's law on thermochemical reactions and its consequences. For manufactures where the products correspond to the types of energy resources and have calorific value, the distribution of energy consumption is carried out according to the weighty volumes of types of products and their heat of combustion (for example, coke production). For industries that have multi-product manufacture of non-combustible products, the distribution of energy consumption between products is based on the weighty volumes of products and their heat capacity (for example, blast furnace iron production). In accordance with the proposed methodological provisions, we present calculation formulas for determining the distribution of total technological energy consumption for separate types of coke and blast furnace production. The results calculations of energy consumption are presented separately for coke, coke-oven gas, and chemical products of coke manufacture as well as for cast iron and furnace slag for blast furnace production. Calculations show a significant reduction of the energy consumption of coke, with regard for the distribution of energy consumption for individual outputs of coke production (by 27.2%) and pig iron in blast furnace production (a decrease in 31.8%.). The proposed methodological provisions for the distribution of total technological energy consumption between separate types of outputs of multi-product industries can be used in such manufactures of oil refining and chemical industry, in the processing industry, in particular, in the production of dairy products, etc. Keywords: energy consumption, multi-product manufacture, coke, coke-oven gas, cast iron, slag, heat of combustion

2021 ◽  
Vol 2021 (2) ◽  
pp. 44-52
Author(s):  
G.O. Kuts ◽  
◽  
O.I. Teslenko ◽  

The perspective development of ferrous metallurgy of Ukraine for the period up to 2040 is considered. This development will take place due to structural changes of production schemes and technological measures with more effective characteristics of energy resources, energy carriers, and raw materials that directly influence the energy intensity of metallurgical products. The existing energy intensity calculations techniques were advanced and the total technological energy intensity of ferrous metallurgy products was calculated. Comparison of indicators of total technological energy intensity of final products of ferrous metallurgy (rolled metal) showed that rolled products produced by the latest energy-efficient technological schemes, which are projected to be implemented by 2040, will reduce total technological energy intensity up to 20% less than similar technological schemes used since 2017. For example, the total technological energy consumption of rolled billets of oxygen-converter steel will decrease by 17.2% (in terms of physical volume in the forecasted 2040 will be 862.293 kg c.e./t compared to the base 2017 – 1042.044 kg c.e./t), scrap process steel by 8.9% (respectively 923.999 kg c.e./t and 1014.120 kg c.e./t) and electric arc steel by 20% (703.292 kg c.e./t and 878.913 kg c.e./t). Regarding coke production, the total technological energy consumption of coke is projected to decrease by 24.0%: in 2040 it will be 210.040 kg c.e./t (in the base year 2017 it is equal to 244.585 kg c.e./t), and coke oven gas by 16.0%. , 4% (respectively 33.468 kg c.e./t and 38.72 kg c.e./t). The analysis of the role of components of energy intensity of products, namely for such products as iron ore, blast furnace coke, coke oven gas, and pig iron was made. The main components are energy resources, the share of which in the energy intensity of products is from 60 to 90%, and for other products, it is a raw material, the shares of which are within the same ranges. The main component in the structure of the formation of the total technological energy consumption of rolled products is the initial energy consumption of raw materials, the value of which is in the range of 90–92%. Keywords: technological energy intensity, structural changes, technological measures, energy resources, raw materials, pig iron, steel, rolled products


2018 ◽  
Vol 15 (6) ◽  
pp. 771-785
Author(s):  
Hongbin Zhao ◽  
Yu Cao ◽  
Chang Liu ◽  
Xiang Qi

PurposeThe purpose of this paper is to investigate the performance of coke oven gas (COG)-combined cooling, heating and power (CCHP) system and to mainly focus on studying the influence of the environmental conditions, operating conditions and gas conditions on the performance of the system and on quantifying the distribution of useful energy loss and the saving potential of the integrated system changing with different parameters.Design/methodology/approachThe working process of COG-CCHP was simulated through the establishment of system flow and thermal analysis mathematical model. Using exergy analysis method, the COG-CCHP system’s energy consumption status and the performance changing rules were analyzed.FindingsThe results showed that the combustion chamber has the largest exergy loss among the thermal equipments. Reducing the environmental temperature and pressure can improve the entire system’s reasonable degree of energy. Higher temperature and pressure improved the system’s perfection degree of energy use. Relatively high level of hydrogen and low content of water in COG and an optimal range of CH4volume fraction between 35 per cent and 46 per cent are required to ensure high exergy efficiency of this integration system.Originality/valueThis paper proposed a CCHP system with the utilization of coke oven gas (COG) and quantified the distribution of useful energy loss and the saving potential of the integrated system under different environmental, operating and gas conditions. The weak links of energy consumption within the system were analyzed, and the characteristics of COG in this way of using were illustrated. This study can provide certain guiding basis for further research and development of the CCHP system performance.


Metallurgist ◽  
1961 ◽  
Vol 5 (8) ◽  
pp. 359-361
Author(s):  
P. M. Mironov

2021 ◽  
Vol 1 ◽  
pp. 28-36
Author(s):  
A.Yu. Martynova ◽  
A.I. Larina ◽  
V.A. Saraeva

The problem of cleaning coke oven gas from sulfur compounds, despite their recent decrease in the raw material base of coking, remains relevant in connection with the requirements to reduce sulfur dioxide emissions into the atmosphere. When using monoethanolamine for the purification of coke oven gas from sulfur compounds, production workers are faced with the problems of determining the exact concentration both in solutions and in coke oven gas and in environmental objects. The article provides an overview of the currently existing methods for the quantitative determination of the content of monoethanolamine in liquid and gaseous media. The results of studies of the possibility of their use in the conditions of by-product coke production are presented, directions of improvement of the known methods are determined in order to eliminate the influence of accompanying components inherent in by-product coke production (in particular, ammonia, amines, phenols, etc.), which distort the analysis results. The authors describe the methods of increasing the selectivity of analytical methods for determining the content of monoethanolamine in: – coke oven gas - based on the absorption of the test substance from coke oven gas by a solution of orthoboric acid, followed by its determination in a solution with pnitrophenyldiazonium; – the air of the working area under the conditions of by-product coke production - it was proposed to eliminate the negative effect of hydrogen sulfide and phenol using an absorber containing a sodium hydroxide solution located in front of the absorber with a hydrochloric acid solution for monoethanolamine (a revised measurement procedure with additions set out in accordance with the requirements of the current legislation in the field of metrology and established metrological characteristics, agreed by the Chief Sanitary Doctor of Ukraine). The directions of research necessary for the development of a method for determining the content of monoethanolamine in process waters of coke-chemical production are outlined. Keywords: desulfurization, monoethanolamine, content determination, selectivity, ammonia, p-nitrophenyldiazonium, coke oven gas, complex compound, color intensity, photometry, measurements. Corresponding author A.Yu. Martynova, e-mail: [email protected]


Sign in / Sign up

Export Citation Format

Share Document