scholarly journals EVIDENCE OF THE EARTH’S INNER RADIATION BELTS DURING THE LOW SOLAR AND GEOMAGNETIC ACTIVITY OBTAINED WITH THE STEP-F INSTRUMENT

2021 ◽  
Vol 26 (3) ◽  
pp. 224-238
Author(s):  
O. V. Dudnik ◽  
◽  
O. V. Yakovlev ◽  

Purpose: The subject of research is the spatio-temporal charged particles in the Earth’s magnetosphere outside the South Atlantic magnetic Anomaly during the 11-year cycle of solar activity minimum. The work aims at searching for and clarifying the sustained and unstable new spatial zones of enhanced subrelativistic electron fluxes at the altitudes of the low Earth orbit satellites. Design/methodology/approach: Finding and ascertainment of new radiation belts of the Earth were made by using the data analysis from the D1e channel of recording the electrons of energies of ΔEe=180–510 keV and protons of energies of ΔEp=3.5–3.7 MeV of the satellite telescope of electrons and protons (STEP-F) aboard the “CORONAS-Photon” Earth low-orbit satellite. For the analysis, the data array with the 2 s time resolution normalized onto the active area of the position-sensitive silicon matrix detector and onto the solid angle of view of the detector head of the instrument was used. Findings: A sustained structure of three electron radiation belts in the Earth’s magnetosphere was found at the low solar and geomagnetic activity in May 2009. The two belts are known since the beginning of the space age as the Van Allen radiation belts, another additional permanent layer is formed around the drift shell with the McIlwaine parameter of L = 1.65±0.05. On some days in May 2009, the new two inner radiation belts were observed simultaneously, one of those latter being recorded between the investigated sustained belt at L≈1.65 and the Van Allen inner belt at L≈2.52. Increased particle fluxes in this unstable belt have been formed with the drift shell L≈2.06±0.14. Conclusions: The new found inner radiation belts are recorded in a wide range of geographic longitudes λ, both at the ascending and descending nodes of the satellite orbit, from λ1≈150° to λ2≈290°. Separately in the Northern or in the Southern hemispheres, outside the outer edge of the outer radiation belt, at L≥7–8, there are cases of enhanced particle fl ux density in wide range of L-shells. These shells correspond to the high-latitude region of quasi-trapped energetic charged particles. Increased particle fluxes have been recorded up to the bow shock wave border of the Earth’s magnetosphere (L≈10-12). Key words: radiation belt, STEP-F instrument, electrons, magnetosphere, drift L-shell, particle flux density

2020 ◽  
Author(s):  
Samuel Walton ◽  
Colin Forsyth ◽  
Iain Jonathan Rae ◽  
Clare Watt ◽  
Richard Horne ◽  
...  

<p>The electron population inside Earth’s outer radiation belt is highly variable and typically linked to geomagnetic activity such as storms and substorms. These variations can differ with radial distance, such that the fluxes at the outer boundary are different from those in the heart of the belt. Using data from the Proton Electron Telescope (PET) on board NASA’s Solar Anomalous Magnetospheric Particle Explorer (SAMPEX), we have examined the correlation between electron fluxes at all L's within the radiation belts for a range of geomagnetic conditions, as well as longer-term averages. Our analysis shows that fluxes at L≈2-4 and L≈4-10 are well correlated within these regions, with coefficients in excess of 80%, however, the correlation between these two regions is low. These correlations vary between storm-times and quiet-times. We examine whether, and to what extent this correlation is related to the level of enhancement of the outer radiation belt during geomagnetic storms, and whether the plasmapause plays any role defining the different regions of correlated flux.</p>


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Noé Lugaz ◽  
Charles J. Farrugia ◽  
Chia-Lin Huang ◽  
Reka M. Winslow ◽  
Harlan E. Spence ◽  
...  

2021 ◽  
Author(s):  
Christopher Lara ◽  
Pablo S. Moya ◽  
Victor Pinto ◽  
Javier Silva ◽  
Beatriz Zenteno

<p>The inner magnetosphere is a very important region to study, as with satellite-based communications increasing day after day, possible disruptions are especially relevant due to the possible consequences in our daily life. It is becoming very important to know how the radiation belts behave, especially during strong geomagnetic activity. The radiation belts response to geomagnetic storms and solar wind conditions is still not fully understood, as relativistic electron fluxes in the outer radiation belt can be depleted, enhanced or not affected following intense activity. Different studies show how these results vary in the face of different events. As one of the main mechanisms affecting the dynamics of the radiation belt are wave-particle interactions between relativistic electrons and ULF waves. In this work we perform a statistical study of the relationship between ULF wave power and relativistic electron fluxes in the outer radiation belt during several geomagnetic storms, by using magnetic field and particle fluxes data measured by the Van Allen Probes between 2012 and 2017. We evaluate the correlation between the changes in flux and the cumulative effect of ULF wave activity during the main and recovery phases of the storms for different position in the outer radiation belt and energy channels. Our results show that there is a good correlation between the presence of ULF waves and the changes in flux during the recovery phase of the storm and that correlations vary as a function of energy. Also, we can see in detail how the ULF power change for the electron flux at different L-shell We expect these results to be relevant for the understanding of the relative role of ULF waves in the enhancements and depletions of energetic electrons in the radiation belts for condition described.</p>


2015 ◽  
Vol 33 (5) ◽  
pp. 583-597 ◽  
Author(s):  
H. Breuillard ◽  
O. Agapitov ◽  
A. Artemyev ◽  
E. A. Kronberg ◽  
S. E. Haaland ◽  
...  

Abstract. Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave–particle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40°. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1–100 keV) in the outer radiation belt. The dependence of this distribution upon latitude obtained from Cluster STAFF-SA is then consistently reproduced along a certain L-shell range (4 ≤ L ≤ 6.5), employing WHAMP-based ray tracing simulations in hot plasma within a realistic inner magnetospheric model. We show here that, as latitude increases, the chorus peak frequency is globally shifted towards lower frequencies. Making use of our simulations, the peak frequency variations can be explained mostly in terms of wave damping and amplification, but also cross-L propagation. These results are in good agreement with previous studies of chorus wave spectral extent using data from different spacecraft (Cluster, POLAR and THEMIS). The chorus peak frequency variations are then employed to calculate the pitch angle and energy diffusion rates, resulting in more effective pitch angle electron scattering (electron lifetime is halved) but less effective acceleration. These peak frequency parameters can thus be used to improve the accuracy of diffusion coefficient calculations.


2021 ◽  
Author(s):  
Beatriz Sanchez-Cano ◽  
Rami Vainio ◽  
Marco Pinto ◽  
Philipp Oleynik ◽  
Rumi Nakamura ◽  
...  

<p>BepiColombo is a joint mission of the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) to the planet Mercury, that was launched in October 2018 and it is due to arrive at Mercury in late 2025. It consists of two spacecraft, the Mercury Planetary Orbiter (MPO) built by ESA, and the Mercury Magnetospheric Orbiter (MMO) built by JAXA, as well as a Mercury Transfer Module (MTM) for propulsion built by ESA. The cruise phase to Mercury will last ~7 years and constitutes an exceptional opportunity for studying the evolution of the solar wind, solar transients, as well as for planetary science and planetary space weather. Some important aspects to consider during the cruise are the close distances to the Sun that BepiColombo will face, the near half-solar activity cycle that will cover, as well as the several flybys to Earth, Venus and Mercury that will perform. So far, BepiColombo has accomplished a flyby to Earth in April 2020 and a flyby to Venus in October 2020, with a second flyby to Venus programmed for August 2021 and the first Mercury flyby in October 2021.</p><p>This work focuses on the flyby to Earth, and in particular, on the radiation belt observations performed by several instruments onboard BepiColombo. The flyby occurred on 10 April 2020 under relatively steady solar wind conditions. BepiColombo crossed the outer radiation belt on the terrestrial dawn side when moving from the day side to the night side. It skimmed the inner radiation belt on the night side sector after dawn, and then crossed again the outer belt at night (behind the dusk terminator region). Two instruments onboard the MPO spacecraft were able to take measurements of the belts: the BepiColombo Radiation Monitor (BERM) and the Solar Intensity X-Ray and Particle Spectrometer (SIXS). In this work, we report the particle species, radiation and energies observed by these two instruments, as well as we perform a cross-calibration of their detections, which is an important activity in preparation for joint-observations of the Hermean environment. Moreover, using magnetic field observations from MPO-MAG, we also investigate the trajectory of the particles within the radiation belts. This work is complemented with data from other missions that give us the state of the terrestrial system and frame our observations into the right context. It includes data from Cluster-II, Themis, and Arase/ERG missions.</p>


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
A.V. Artemyev ◽  
O.V. Agapitov ◽  
D. Mourenas ◽  
V.V. Krasnoselskikh ◽  
F.S. Mozer

Abstract Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity.


Sign in / Sign up

Export Citation Format

Share Document