scholarly journals Oxane dendrimers of tetravalent elements as models for their dioxide polymorphs

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 3-14
Author(s):  
A.G. Grebenyuk ◽  

Oxides of tetravalent elements are well known to have a lot of crystalline modifications. For example, most of silica polymorphs are characterized by tetrahedral coordination environment of silicon atoms. On the contrary, crystals of stishovite and of some silicate minerals have their silicon atoms in octahedral coordination spheres. It has been found experimentally that the phase transitions between silica polymorphs accompanied by a rearrangement of silica-oxygen tetrahedrons into octahedra require an energy income (preference energy) of 54 kJ/mol. When increasing the atomic mass of the oxide forming element, the former decreases extremely and for tin dioxide is equal to -59 kJ/mol. These values can be reproduced in a theoretical way, within the frameworks of modern quantum chemical methods and periodic models. High disperse silica nanoparticles (as well as those for other oxides) have only the nearest order of atomic stationing, so that theoretical approaches developed for crystals cannot be applied to small particles. These particles can be transformed into stishovite form under hydrothermal conditions. Such a process can be simulated within cluster approximation by use of molecular models. This work is devoted to quantum chemical simulation of formation of the fragments with hexa-coordinated atoms of silicon and of its analogs in the structure of oxane dendrimers. A row of high symmetry models was examined containing two, three, five, and seventeen atoms of silicon and of germanium, titanium and tin, terminated with hydroxyl groups. These structures can be rearranged into another ones including oxide forming atoms with elevated (equal to 5 or 6) coordination number, so mimicking the rutile-like structure. Such models let it possible to fulfill the procedure of transformation without rupturing siloxane bonds, so remaining within a deformation approach. Another advantage is the exclusion of the basis set superposition error due to use of molecular models of the same total formula for all the coordination states. All calculations were carried out by Hartree-Fock and density functional theory methods with the all-electron (3-21G*) and valent (SBKJC) basis sets by means of the GAMESS program. Models of various size have been examined, in particular, disiloxane (HO)3Si-O-Si(OH)3 witch can be transformed into a self-coordinated form where one of silicon atoms becomes a five-coordinated; trisiloxane (HO)3Si-O-Si(OH)2-O-Si(OH)3 can be rearranged into symmetric isomer with one hexa-coordinated silicon atom. Pentasiloxane with neo-structure of [(HO)3Si-O]4Si forms three coordination structures, the most stable of them mimicking the stishovite crystal; it contains one 6-coordinated and two 5-coordinated silicon atoms. Siloxane containing 17 silicon atoms has a super-neo-structure of {[(HO)3Si-O]3Si-O}4Si; it includes seven six-coordinated and four five-coordinated silicon atoms. Relative models for silicon analogs have been also examined. When analyzing a dependence of the energy differences between open and coordinated oxane structures on the number of atoms of the oxide forming element in the cluster, one can jump to the conclusion that the specific value of this characteristic monotonously decreases with the increase in the number of atoms of the molecular model, so becoming close to the experimental data.

2014 ◽  
Vol 13 (04) ◽  
pp. 1450023 ◽  
Author(s):  
Reza Ghiasi ◽  
Morteza Zaman Fashami ◽  
Amir Hossein Hakimioun

In this work, the interaction of C 20 with N 2 X 2 ( X = H , F , Cl , Br , Me ) molecules has been explored using the B3LYP, M062x methods and 6-311G(d,p) and 6-311+G(d,p) basis sets. The interaction energies (IEs) obtained with standard method were corrected by basis set superposition error (BSSE) during the geometry optimization for all molecules at the same levels of theory. It was found C 20… N 2 H 2 interaction is stronger than the interaction of other N 2 X 2 ( X = F , Cl , Br , Me ) with C 20. Highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively) levels are illustrated by density of states spectra (DOS). The nucleus-independent chemical shifts (NICSs) confirm that C 20… N 2 X 2 molecules exhibit aromatic characteristics. Geometries obtained from DFT calculations were used to perform NBO analysis. Also, 14 N NQR parameters of the C 20… N 2 X 2 molecules are predicted.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5174
Author(s):  
Frederick Stein ◽  
Jürg Hutter ◽  
Vladimir V. Rybkin

Intermolecular interactions play an important role for the understanding of catalysis, biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper treatment of short-range interactions of common density functionals with the correct description of long-range interactions of wave-function correlation methods. Up to now, there are only a few benchmark studies available examining the performance of DHDFs in condensed phase. We studied the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane waves formalism on cohesive energies of four representative dispersion interaction dominated crystal structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme grid dependence of the underlying density functional for PWRB95. The basis set superposition error (BSSE) and convergence with respect to the super cell size are discussed for two different large basis sets.


1998 ◽  
Vol 53 (10) ◽  
pp. 1223-1235
Author(s):  
Inge Warttmann ◽  
Günter Häfelinger

AbstractAb initio Hartree-Fock (HF) and density functional (DFT) optimizations on the test m olecule osmiumtetracarbonyldihydride (13) with various basis sets show that the lanl2mb pseudopotential basis set for osmium leads in the HF approximation to more reliable molecular geometries than the DFT calculations. This HF procedure was used for the optimizations of molecular geometries of three isomeric 4,4,4,4,17,17,17,17-octacarbonyl-4,17-diosma[7.7]ortho-, meta- and paracyclophanes 1 to 3, of which 3 was found to be predestined for formation of various host-guest complexes with possible guests benzene (4), fluorobenzene (5), 1,3,5- trifluorobenzene (6), 1,2,4,5-tetrafluorobenzene (7), hexafluorobenzene (8), fluoroanil (9), tetrafluoroethene (10), tetracyanoethene (11) and aniline (12). Results of optimized hostguest geometries are presented graphically for inclusions and associations of guest 4 to 12 with 3. Calculated lanl2mb interaction energies, after correction for basis set superposition error (BSSE), remain favourable only for inclusion of 5 and associations of 5, 10, 11 and 12. Additionally lanl2dz single point calculations for inclusion, which may not need BSSE correction because of the improved basis set, are favourable for 6 and 12. According to lanl2mb HOMO and LUMO energies, 3 may as well easily donate or accept electrons. This may be an interpretation to the surprising effect, that Mulliken total charges are positive on the electron accepting guest molecules 4 to 11. There are geometrical peculiarities in the optimized host-guest complexes for inclusion and association. Fluorine atoms of 5 to 10 and nitrogen atoms of a cyano group of 11 and the amino group of 12 like to come close to one or two carbonyl groups. Similar distances of 2.70 Å to 3.57 Å between the O atom of the carbonyl group and the F atom or N atom appear in all optimizations of inclusion and association of 5 to 12 except in the case of association of tetrafluoroethene (10).


2021 ◽  
Vol 12 (4) ◽  
pp. 283-290
Author(s):  
O. V. Filonenko ◽  
◽  
A. G. Grebenyuk ◽  
V. V. Lobanov ◽  
◽  
...  

By the method of density functional theory with exchange-correlation functional B3LYP and basis set 3‑21G (d), the structural and energy characteristics have been considered of the molecular models of SnO2 nanoclusters of different size and composition with the number of Sn atoms from 1 to 10. Incompletely coordinated surface tin atoms were terminated by hydroxyl groups. It has been shown that the Sn–O bond length in nanoclusters does not depend on the cluster size and on the coordination number of Sn atoms, but is determined by the coordination type of neighboring oxygen atoms. Namely, the bond length Sn–O(3) (@ 2.10 Å) is greater than that of Sn–O (2) (@ 1.98 Å). The calculated values of Sn–O (3) bond lengths agree well with the experimental ones for crystalline SnO 2 samples (2.05 Å). The theoretically calculated width of the energy gap decreases naturally with increasing cluster size (from 6.14 to 3.46 eV) and approaches the experimental value of the band gap of the SnO 2 crystal (3.6 eV). The principle of additivity was used to analyze the energy characteristics of the considered models and to estimate the corresponding values for a cassiterite crystal. According to this principle, a molecular model can be represented as a set of atoms or atomic groups of several types that differ in the coordination environment and, therefore, make different contributions to the total energy of the system. The calculated value of the atomization energy for SnO2 is 1661 kJ/mol and corresponds satisfactorily to the experimentally measured specific atomization energy of crystalline SnO2 (1381 kJ/mol). It has been shown that a satisfactory reproduction of the experimental characteristics of crystalline tin dioxide is possible when using clusters containing at least 10 state atoms, for example, (SnO2)10×14H2O.


2020 ◽  
Vol 234 (3) ◽  
pp. 415-440 ◽  
Author(s):  
Muhammad H. Esmaiel ◽  
Hany A. Basuony ◽  
Mohamed K. Al-Nawasany ◽  
Musab M. Shulkamy ◽  
Ibrahim A. Shaaban ◽  
...  

AbstractRaman (3700–100 cm−1) and infrared (4000–400 cm−1) spectra of 2,5-Dimercapto-1,3,4-thiadiazol (DMTD) were recorded in the solid phase. Six structures (1–6) were initially proposed for DMTD as a result of thiol-thione tautomerism and internal rotation(s) of thiol group(s) around the C–S bond. Quantum chemical calculations were carried out for an isolated molecule (1–6) using density functional theory (B3LYP) and ab initio MP2(full) methods utilizing 6-31G(d) and 6-311++G(d,p) basis sets which favor thiol-thione tautomerism (structure 4). Relaxed potential energy surface scans of structure 4 revealed an additional conformer (the thiol group is out-of-plane, structure 7) using the aforementioned methods at 6-311++G(d,p) basis set. For additional verification, plane-wave solid state calculations were carried out at PW91 and PBEsol came out in favor of conformer 7. This is in agreement with the computed/observed SH in-plane bending of S-7 (959/941 cm−1) rather than the one estimated at (880 cm−1) for S-4. Moreover, the observed split IR/Raman bands were found consistent with solid state calculated frequencies of S-7 assuming two molecules per unit cell bonded via H-bonding intermolecular interactions. Aided by vibrational frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed IR and Raman bands is proposed herein. Furthermore, we have estimated the frontier molecular orbitals and atomic charges to account for the corrosion inhibition efficiency of DMTD along with its binding sites to the metal surface. Our results are discussed herein and compared to similar molecules whenever appropriate.


2009 ◽  
Vol 08 (04) ◽  
pp. 765-772 ◽  
Author(s):  
M. AGHAIE ◽  
M. H. GHORBANI ◽  
R. FAZAELI ◽  
H. AGHAIE

The relative stability of Molybdate-Phosphonic Acid (MPA) Complex in gas phase has been carried out using Density Functional Theory (DFT) methods. The methods used for calculations are B3LYP, BP86 and B3PW91, with three series of basis sets: D95**, 6-31+G (d,p) and 6-31++G (d,p) for hydrogen and oxygen atoms; LANL2DZ for Mo and Phosphorus. Predicted geometry and relative stability are discussed. Equilibrium geometry in the ground electronic state energy has been calculated for 1:1 complex. The best result for energetic and geometrical ground state was obtained with Becke3LYP calculations. The Basis Set Superposition Error (BSSE) begins to converge for all methods/basis sets. For this complex, most levels of theory seem to give reasonable estimates of the known binding energies, but here, too, the BSSE overwhelms the reliability of the binding energies for these basis sets.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


2007 ◽  
Vol 62 (12) ◽  
pp. 711-715 ◽  
Author(s):  
Ahmad Seif ◽  
Mahmoud Mirzaei ◽  
Mehran Aghaie ◽  
Asadollah Boshra

Density functional theory (DFT) calculations were performed to calculate the electric field gradient (EFG) tensors at the sites of aliminium (27Al) and nitrogen (14N) nuclei in an 1 nm of length (6,0) single-walled aliminium nitride nanotube (AlNNT) in three forms of the tubes, i. e. hydrogencapped, aliminium-terminated and nitrogen-terminated as representatives of zigzag AlNNTs. At first, each form was optimized at the level of the Becke3,Lee-Yang-Parr (B3LYP) method, 6-311G∗∗ basis set. After, the EFG tensors were calculated at the level of the B3LYP method, 6-311++G∗∗ and individual gauge for localized orbitals (IGLO-II and IGLO-III) types of basis sets in each of the three optimized forms and were converted to experimentally measurable nuclear quadrupole resonance (NQR) parameters, i. e. quadrupole coupling constant (qcc) and asymmetry parameter (ηQ). The evaluated NQR parameters revealed that the considered model of AlNNT can be divided into four equivalent layers with similar electrostatic properties.With the exception of Al-1, all of the three other Al layers have almost the same properties, however, N layers show significant differences in the magnitudes of the NQR parameters in the length of the nanotube. Furthermore, the evaluated NQR parameters of Al-1 in the Al-terminated form and N-1 in the N-terminated form revealed the different roles of Al (base agent) and of N (acid agent) in AlNNT. All the calculations were carried out using the GAUSSIAN 98 package program.


2018 ◽  
Vol 71 (3) ◽  
pp. 102
Author(s):  
Emma Persoon ◽  
Yuekui Wang ◽  
Gerhard Raabe

Quantum-chemical ab initio, time-independent, as well as time-dependent density functional theory (TD-DFT) calculations were performed on the so far elusive heterocycles inda- and thallabenzene (C5H5In and C5H5Tl), employing several different methods (MP2, CISD, CCSD, CCSD(T), BD, BD(T), QCISD, QCISD(T), CASSCF, DFT/B3LYP), effective core potentials, and different basis sets. While calculations on the MP2 level predict the ground states of the title compounds to be singlets with the first triplet states between 13 and 15 kcal mol−1 higher in energy, single point calculations with the QCISD(T), CCSD(T), and BD(T) methods at CCSD-optimized structures result in energy differences between the singlet and the triplet states in the range between 0.3 and 2.1 kcal mol−1 in favour of the triplet states. According to a CASSCF(8,8) calculation the triplets are also more stable by about 2.5–2.9 kcal mol−1. Calculations were also performed for the C5v-symmetric η5 structural isomers (cyclopentadienylindium, CpIn, and cyclopentadienylthallium, CpTl, Cp = C5H5) of the title compounds. At the highest level of theory employed in this study, C5H5In is between 79 and 88 kcal mol−1 higher in energy than CpIn, while this energy difference is even larger for thallabenzene where C5H5Tl is energetically between 94 and 102 kcal mol−1 above CpTl. In addition we report on the UV/vis spectra calculated with a TD-DFT method as well as on the spectra of the normal modes of C5H5In and C5H5Tl. Both types of spectra might facilitate identification of the title compounds eventually formed in photolysis or pyrolysis experiments.


Sign in / Sign up

Export Citation Format

Share Document