scholarly journals Structure and properties of EB- and TIG-welded joints of high-strength two-phase titanium alloys

2015 ◽  
Vol 2015 (8) ◽  
pp. 14-17 ◽  
Author(s):  
S.V. Akhonin ◽  
◽  
V.Yu. Belous ◽  
R.V. Selin ◽  
I.K. Petrichenko ◽  
...  
2021 ◽  
Vol 313 ◽  
pp. 82-93
Author(s):  
S.V. Akhonin ◽  
V.Yu. Belous ◽  
R.V. Selin ◽  
V.A. Berezos

As intensive work is underway in leading material science centers in the USA, EU, Russia, and China, both to modernize existing titanium alloys and to create new ones, the E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine developed titanium alloys T110 (Ti-5.5Al-1.2Mo-1.2V-4Nb-2Fe-0.5Zr system) and T120 (Ti-6.5Al-3Mo-2.5V-4Nb-1Cr-1Fe-2.5Zr system), which according to their characteristics, belong to the group of modern two-phase high-alloyed alloys characterized by high strength and good ductility. With more and more attention is being paid to the expansion in the usage of welded structures and assemblies of high strength titanium alloys with UTS ≥ 1100 MPa, there’s urgent need in studying best ways to obtain welded joints from such alloys. The weldability of two-phase high-alloyed titanium alloys, the use of which can give big reduction in structural weight, is significantly worse than low-alloyed alloys, therefore for a new alloy it is necessary to ensure the possibility of obtaining welded joints with a strength of at least 90% compared to the strength of base material. The aim of this work is to study the influence of the welding thermal cycle and reducing of weld metal alloying degree on the structure and mechanical properties of welded joints of high-strength titanium alloy Ti-6.5Al-3Mo-2.5V-4Nb-1Cr-1Fe-2.5Zr with tensile strength more than 1200 MPa, as well as assessment of it welded joints properties in comparison with other high-strength titanium alloys.


2020 ◽  
Vol 2020 (6) ◽  
pp. 20-26
Author(s):  
O.A. Gaivoronskyi ◽  
◽  
V.D. Poznyakov ◽  
O.M. Berdnikova ◽  
T.O. Alekseenko ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 80 ◽  
Author(s):  
Mykola Chausov ◽  
Janette Brezinová ◽  
Andrii Pylypenko ◽  
Pavlo Maruschak ◽  
Liudmyla Titova ◽  
...  

A simple technological method is proposed and tested experimentally, which allows for the improvement of mechanical properties in sheet two-phase high-strength titanium alloys VT23 and VT23M on the finished product (rolled metal), due to impact-oscillatory loading. Under impact-oscillatory loading and dynamic non-equilibrium processes (DNP) are realized in titanium alloys, leading to the self-organization of the structure. As a result, the mechanical properties of titanium alloys vary significantly with subsequent loading after the realization of DNP. In this study, the test modes are found, which can be used in the production conditions.


Author(s):  
Jacek Górka 1 ◽  
Andrzej Ozgowicz 2

This paper will present the influence of joining process parameters on the structure and properties of overlapped welded joints of 1.8 mm DOCOL 1200M steel. The obtained welded joints were subjected to micro- and macroscopic metallographic examination and hardness measurement. The visual inspections and non-destructive testing made it possible to develop the field of welding parameters to allow obtaining full penetration joints (depending on requirements) or partial penetration joints. For present welding parameters, i.e. feed rate and weld length, which are constant, the actual length of weld is determined by welding frequency. In each case, the microscopic examinations revealed martensitic structure in the weld area, and with the increase in linear welding energy the size of martensite needles became larger, especially in relation to the base material. In HAZ, the martensitic structure is tempered. It has been shown that with appropriately selected parameters the Laser SEAM Stepper method is suitable for welding the DOCOL 1200M steel. With the increase in welding power, the penetration depth increases.


2017 ◽  
Vol 2017 (7) ◽  
pp. 6-14
Author(s):  
L.I. Markashova ◽  
◽  
V.D. Poznyakov ◽  
E.N. Berdnikova ◽  
T.A. Alekseenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document