scholarly journals Influence of parameters of ultrasonic mechanical oscillations on the structure and mechanical properties of weld metal in laser welding of ferritic steels

2017 ◽  
Vol 2017 (2) ◽  
pp. 23-27
Author(s):  
V.V. Somonov ◽  
2006 ◽  
Vol 116-117 ◽  
pp. 173-176 ◽  
Author(s):  
R. Akhter ◽  
L. Ivanchev ◽  
C. Van Rooyen ◽  
P. Kazadi ◽  
H.P. Burger

Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR-Pretoria. They were butt welded in as cast conditions using an Nd:YAG laser. The base metal and weld microstructure were presented. The effect of different heat treatments on microstructure and mechanical properties of the welds were investigated. It was found that the fine dendrite structure of the weld metal contributed for equalizing the mechanical properties of the joint.


2021 ◽  
pp. 1-7
Author(s):  
L. A. Efimenko ◽  
O. E. Kapustin ◽  
I. Yu Utkin ◽  
A. P. Derkach ◽  
E. M. Shamov ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Naiwen Fang ◽  
Erjun Guo ◽  
Kai Xu ◽  
Ruisheng Huang ◽  
Yiming Ma ◽  
...  

A 20 mm thick TC4 titanium alloy plate was welded by ultranarrow gap laser welding with filler wire with Ar and He as shielding gas, respectively. A characterization analysis of the microstructures and mechanical properties of the welded joint was conducted with OM, SEM, XRD, and EBSD and through the microhardness test and tensile test. The results showed that HAZ of the welded joint formed with Ar as shielding gas was much wider than that with He, and weld microstructure composition with the two shielding gases was basically consistent; phase boundary of the weld metal obtained with Ar was clearer, with a larger misorientation between the laths; α′ martensite lath in weld metal prepared with He showed obvious preferred orientation distribution, and α′ martensite microstructure was much finer; the misorientation of α′ phase grain boundary of weld microstructure prepared with Ar was slightly less distributed in high angle grain boundary than that with He; tensile property of the welded joint prepared with He was better than that with Ar; the hardness of each zone of welded joint prepared with He was less fluctuated and the hardness value measured was slightly higher than that with Ar.


Author(s):  
Hannah Schönmaier ◽  
Ronny Krein ◽  
Martin Schmitz-Niederau ◽  
Ronald Schnitzer

AbstractThe alloy 2.25Cr-1Mo-0.25V is commonly used for heavy wall pressure vessels in the petrochemical industry, such as hydrogen reactors. As these reactors are operated at elevated temperatures and high pressures, the 2.25Cr-1Mo-0.25V welding consumables require a beneficial combination of strength and toughness as well as enhanced creep properties. The mechanical properties are known to be influenced by several welding parameters. This study deals with the influence of the heat input during submerged-arc welding (SAW) on the solidification structure and mechanical properties of 2.25Cr-1Mo-0.25V multilayer metal. The heat input was found to increase the primary and secondary dendrite spacing as well as the bainitic and prior austenite grain size of the weld metal. Furthermore, it was determined that a higher heat input during SAW causes an increase in the stress rupture time and a decrease in Charpy impact energy. This is assumed to be linked to a lower number of weld layers, and therefore, a decreased amount of fine grained reheated zone if the multilayer weld metal is fabricated with higher heat input. In contrast to the stress rupture time and the toughness, the weld metal’s strength, ductility and macro-hardness remain nearly unaffected by changes of the heat input.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 86
Author(s):  
Qiaoling Chu ◽  
Lin Zhang ◽  
Tuo Xia ◽  
Peng Cheng ◽  
Jianming Zheng ◽  
...  

The relation between the microstructure and mechanical properties of the Fe–Nb dissimilar joint were investigated using nanoindentation. The weld metal consists mainly of Fe2Nb, α-Fe + Fe2Nb, Nb (s,s) and Fe7Nb6 phases. Radial cracks initiate from the corners of the impressions on the Fe2Nb phase (~20.5 GPa) when subjected to a peak load of 300 mN, whereas the fine lamellar structures (α-Fe + Fe2Nb) with an average hardness of 6.5 GPa are free from cracks. The calculated fracture toughness of the Fe2Nb intermetallics is 1.41 ± 0.53 MPam1/2. A simplified scenario of weld formation together with the thermal cycle is proposed to elaborate the way local phase determined the mechanical properties.


2011 ◽  
Vol 197-198 ◽  
pp. 1658-1661
Author(s):  
Ying Xiong ◽  
Han Ying Zheng

Fatigue tests are carried out for 16MnR welded joint under constant strain control. Test results reveal that 16MnR weld metal exhibits characteristic of cyclic softening and non-masing obviously. The strain–life curve can be best described by the three-parameter equation. It shows the fatigue endurance limit in the heat-affecting zone (HAZ) of welded joint is lower than that in the weld metal.


Sign in / Sign up

Export Citation Format

Share Document