Power Management for Hospital Combined Distributed Power with Load Prediction Using Deep Learning in Islanded Operation Mode

2020 ◽  
Vol 140 (2) ◽  
pp. 156-163
Author(s):  
Yuji Mizuno ◽  
Yoshito Tanaka ◽  
Fujio Kurokawa ◽  
Nobumasa Matsui
2011 ◽  
Vol 8 (4) ◽  
pp. 1097-1115
Author(s):  
Yushan Jin ◽  
Ruikai Liu ◽  
Xingran He ◽  
Yongping Huang

MOST (Media Oriented Systems Transport) protocol is a high-speed multimedia bus protocol. The system can make more and more media devices in the car automatically collaborate, sharing of audio, video and other data, but its own power consumption has not been a better optimization. In the paper, depending on the network management and the notification mechanism, a distributed power management solutions was designed that the slave nodes can sleep independently and the master node manages the network state, and the wake-up mechanisms in the sleep state were proposed. A mathematical modeling and analysis of MOST networks power were built in MATLAB. This program takes full advantage of MOST network protocol for the intelligent management. Simulation results shown that, with the increasing number of nodes in MOST, energy saving become more effective. More than 20% power saved can be achieved with distributed power management solution in 8-node MOST.


Author(s):  
D. Hrebenyuk

Існуючі в хмарних обчислювальних середовищах підходи до початкового виділення і подальшого розподілу ресурсів можна розділити на 3 типи: ручне призначення ресурсів, планування ресурсів диспетчером хмарного обчислювального середовища і планування ресурсів середовищем віртуалізації. Хмарні обчислювальні середовища мають особливості, які створюють специфіку розподілу ресурсів в такому середовищі. Деякі елементи цієї проблематики є спільними з проблемами систем віртуалізації, а деякі мають особливості, характерні для хмарних обчислювальних середовищ. У середовищах віртуалізації проблема планування та оптимізації використання ресурсів вирішується двома способами: перерозподіл ресурсів адміністратором середовища віртуалізації вручну; автоматичне планування ресурсів з використанням методів розподіленого виділення ресурсів DRS (Distributed Resource Scheduling) і розподіленого управління енергоспоживанням DPM (Distributed Power Management). У різних середовищах віртуалізації DRS і DPM працюють по-різному, однак початкова логіка роботи зберігається. Предметом статті є дослідження проблематики розподілення ресурсів у середовищах віртуалізації та у хмарних обчислювальних середовищах. Метою є оцінка існуючих методів розподілення ресурсів у віртуальних середовищах, виявлення їх відповідності до обов’язкових характеристик хмарних обчислень. Завдання: проаналізувати існуючі методи розподілення ресурсів у середовищах віртуалізації та хмарних обчислювальних середовищах, визначити їх переваги і недоліки. За результатами порівняльного аналізу можна зробити висновок, що методи, які найчастіше застосовуються в хмарних обчислювальних середовищах, дуже примітивні, і завдання розподілу ресурсів в хмарному середовищі може бути більш ефективно вирішено тими ж методами, що використовуються в середовищах віртуалізації. Висновки. Недоліком кожного з проаналізованих методів є те, що потреби застосунків, які працюють всередині екземплярів, враховуються тільки в контексті необхідних обсягів процесорного ресурсу, оперативної пам'яті і наявності вільного дискового простору. При цьому не враховується специфіка роботи застосунків, а також те, як з цим застосунком будуть розділяти ресурси вже розгорнуті на тих же хостах екземпляри. Таким чином, не завжди має місце вибір оптимального хоста / ресурсу зберігання для розміщення екземпляру, що призводить до істотного зниження продуктивності застосунків і ефективності використання «хмарного» ресурсу.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4900 ◽  
Author(s):  
Hongze Li ◽  
Hongyu Liu ◽  
Hongyan Ji ◽  
Shiying Zhang ◽  
Pengfei Li

Ultra-short-term load demand forecasting is significant to the rapid response and real-time dispatching of the power demand side. Considering too many random factors that affect the load, this paper combines convolution, long short-term memory (LSTM), and gated recurrent unit (GRU) algorithms to propose an ultra-short-term load forecasting model based on deep learning. Firstly, more than 100,000 pieces of historical load and meteorological data from Beijing in the three years from 2016 to 2018 were collected, and the meteorological data were divided into 18 types considering the actual meteorological characteristics of Beijing. Secondly, after the standardized processing of the time-series samples, the convolution filter was used to extract the features of the high-order samples to reduce the number of training parameters. On this basis, the LSTM layer and GRU layer were used for modeling based on time series. A dropout layer was introduced after each layer to reduce the risk of overfitting. Finally, load prediction results were output as a dense layer. In the model training process, the mean square error (MSE) was used as the objective optimization function to train the deep learning model and find the optimal super parameter. In addition, based on the average training time, training error, and prediction error, this paper verifies the effectiveness and practicability of the load prediction model proposed under the deep learning structure in this paper by comparing it with four other models including GRU, LSTM, Conv-GRU, and Conv-LSTM.


2020 ◽  
Vol 263 ◽  
pp. 114683 ◽  
Author(s):  
Zhe Wang ◽  
Tianzhen Hong ◽  
Mary Ann Piette

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1446 ◽  
Author(s):  
Hyun Jun Jung ◽  
Saman Nezami ◽  
Soobum Lee

Energy harvesters generate power only when ambient energy is available, and power loss is significant when the harvester does not produce energy and its power management circuit is still turned on. This paper proposes a new high-efficiency power management circuit for intermittent vibration energy harvesting. The proposed circuit is unique in terms of autonomous power supply switch between harvester and storage device (battery), as well as self-start and control of the operation mode (between active and sleep modes). The self-start controller saves power during an inactive period and the impedance matching concept enables maximum power transfer to the storage device. The proposed circuit is prototyped and tested with an intermittent vibration energy harvester. Test results found that the daily energy consumption of the proposed circuit is smaller than that of the resistive matching circuit: 0.75 J less in sleep mode and 0.04 J less in active mode with self-start.


Sign in / Sign up

Export Citation Format

Share Document