An Integral Equation for Analysis of Partial Discharge Data Obtained with an Asymmetric IEC(b) Electrode System at Various Applied Voltage Frequency

2013 ◽  
Vol 133 (3) ◽  
pp. 85-90 ◽  
Author(s):  
Tatsuki Okamoto ◽  
Takashi Kuraishi ◽  
Toshihiro Takahashi ◽  
Satoru Miyazaki
2011 ◽  
Vol 131 (10) ◽  
pp. 866-871 ◽  
Author(s):  
Takashi Kuraishi ◽  
Tatsuki Okamoto ◽  
Toshihiro Takahashi ◽  
Satoru Miyazaki ◽  
Hiroshi Suzuki

2014 ◽  
Vol 492 ◽  
pp. 186-189
Author(s):  
Ji Chong Liang ◽  
Tian Zheng Wang ◽  
Kang Ning Wang ◽  
Jun Hao Li

Partial discharge (PD) detection is a technique widely used for high voltage equipment insulation condition assessment. The metal protrusion is a situation that often appear in transformer. Metal protrusion will cause the electric field concentration and lead to partial discharge. In this paper, PD characteristics in transformer oils are examined under AC conditions, using a needle-to-plane electrode system. The PD activity in transformer oil is confirmed as appearing in pulse burst form and the PD number and amplitude will increase with the applied voltage increase. The PRPD pattern display behavior typical of corona PD in oil.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1065
Author(s):  
Houssem Eddine Nechmi ◽  
Michail Michelarakis ◽  
Abderrahmane (Manu) Haddad ◽  
Gordon Wilson

Negative and positive partial discharge inception voltages and breakdown measurements are reported in a needle-plane electrode system as a function of pressure under AC voltage for natural gases (N2, CO2, and O2/CO2), pure NovecTM gases (C4F7N and C5F10O) and NovecTM in different natural gas admixtures. For compressed 4% C4F7N–96% CO2 and 6% C5F10O–12% O2–82% CO2 gas mixtures, the positive-streamer mode is identified as the breakdown mechanism. Breakdown and negative partial discharge inception voltages of 6% C5F10O–12% O2–82% CO2 are higher than those of 4% C4F7N–96% CO2. At 8.8 bar abs, the breakdown voltage of 6% C5F10O–12% O2–82% CO2 is equal to that of 12.77% O2–87.23% CO2 (buffer gas). Synergism in negative partial discharge inception voltage/electric field fits with the mean value and the sum of each partial pressure individually component for a 20% C4F7N–80% CO2 and 6% C5F10O–12% O2–82% CO2, respectively. In 9% C4F7N–91% CO2, the comparison of partial discharge inception electric fields is Emax (CO2) = Emax(C4F7N), and Emax (12.77% O2–87.23% CO2) = Emax(C5F10O) in 19% C5F10O–81%(12.77% O2–87.23% CO2). Polarity reversal occurs under AC voltage when the breakdown polarity changes from negative to positive cycle. Polarity reversal electric field EPR was quantified. Fitting results show that EPR (CO2) = EPR(9% C4F7N–91% CO2) and EPR(SF6) = EPR (22% C4F7N–78% CO2). EPR (4% C4F7N–96% CO2) = EPR (12.77% O2–87.23% CO2) and EPR (6% C5F10O–12% O2–82% CO2) < EPR (4% C4F7N–96% CO2) < EPR (CO2).


Author(s):  
Vivek Venkobarao

A discharge estimator is designed and analyzed in this chapter to estimate the discharge with voltage, frequency and current without prior knowledge of head. A control of discharge in submersible pump is achieved by varying the motor speed. In VSI fed induction motor the speed is varied by varying the switching frequency. The ratio of frequency to the applied voltage is maintained constant, to keep the air gap flux at a desired value. The development of discharge estimator, PID and Fuzzy controllers are discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document