scholarly journals Steady State Analysis of Resin Molded Type Voltage-Current Sensor for Real-Time Observation of Power Factor in Power Distribution System

2008 ◽  
Vol 128 (6) ◽  
pp. 811-819 ◽  
Author(s):  
Tatsuya Furukawa ◽  
Manabu Ashikawa ◽  
Masashi Ohchi
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4826
Author(s):  
Steffen Meinecke ◽  
Leon Thurner ◽  
Martin Braun

Publicly available grid datasets with electric steady-state equivalent circuit models are crucial for the development and comparison of a variety of power system simulation tools and algorithms. Such algorithms are essential to analyze and improve the integration of distributed energy resources (DERs) in electrical power systems. Increased penetration of DERs, new technologies, and changing regulatory frameworks require the continuous development of the grid infrastructure. As a result, the number and versatility of grid datasets, which are required in power system research, increases. Furthermore, the used grids are created by different methods and intentions. This paper gives orientation within these developments: First, a concise overview of well-known, publicly available grid datasets is provided. Second, background information on the compilation of the grid datasets, including different methods, intentions and data origins, is reviewed and characterized. Third, common terms to describe electric steady-state distribution grids, such as representative grid or benchmark grid, are assembled and reviewed. Recommendations for the use of these grid terms are made.


Author(s):  
Koteswara Rao Uyyuru ◽  
Mahesh Kumar Mishra

In this paper, the perfect harmonic cancellation (PHC), unity power factor (UPF) control strategies of distribution static compensator (DSTATCOM) are compared along with a newly proposed control strategy. In the proposed strategy, to get the best power factor, the conductance factors for the compensated load are evaluated for a specified source current total harmonic distortion (THD) limit. The performance of this method along with perfect harmonic cancellation (PHC) and unity power factor (UPF) strategies is evaluated on a distribution system model developed using PSCAD 4.2.1. In the distribution system, harmonic resonance is one of the prime factors for the harmonic propagation. Hence, in damping the harmonic resonance, selection of an appropriate control strategy for the DSTATCOM is crucial and this is verified with a detailed study. The simulation results are presented to show the performance of these strategies in load compensation and damping the harmonic propagation in the distribution system.


Sign in / Sign up

Export Citation Format

Share Document