scholarly journals A Simplified Analysis of Steady State Characteristics of Three Phase Induction Motor with Stator Voltage Control by Symmetrically Triggered Thyristors

1976 ◽  
Vol 96 (1) ◽  
pp. 36-42
Author(s):  
Shoichiro Yamada ◽  
Tomoo Fujii
Author(s):  
Waleed Khalid Shakir Al-Jubori ◽  
Yasir Abdulhafedh Ahmed

Study and analysis the effect of variable applied voltage on SCIM performances based on FEA is presented. Three phase squirrel cage induction motor SCIM has been investigated and numerically simulated using finite element method (FEM) with the aid of ANSYS software (RMxprt and Maxwell 2D/3D). This research presents study and analysis of the effects of the voltage variation on performance and efficiency of the three-phase induction motor of the squirrel cage type. The Finite Elements Analysis Method FEA is used as one of the best methods for analysis and simulation of electrical motors in addition to the possibility of dealing with nonlinear equations, Since the induction motor is a complex electromagnetic reaction, the researchers used the ANSYS program to represent and analyze the performance of the motor under variable supply voltage. The case studied in this research is three phases, 380V, 50Hz, 2.2kW, induction motor that widely use in industrial application. The aim of this research is to study the effect of voltage variation on efficiency, current value, power factor and torque of SCIM.  The RMxprt software has been used for modeling and simulating the induction motor and calculating the values of phases currents, input and output power in additional of overall efficiency at steady state condition. The next stage of the research is creating Maxwell 2-D design from the base model of RMxprt software, Maxwell 2-D model has the ability to computing the distribution of magnetic field and explaining the performance under steady-state operation. The obtained results show significant reduction of motor performance due to the effect of variation of apply voltage.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shahrouz Ebrahimpanah ◽  
Qihong Chen ◽  
Liyan Zhang ◽  
Misbawu Adam

This paper proposes a model predictive voltage control (MPVC) strategy with duty cycle control for grid-connected three-phase inverters with output LCL filter. The model of the system is used to predict the capacitor filter voltage according to the future output current for each possible switching state at each sampling period. Then the cost function for each prediction is determined and the switching state is selected. In the proposed method, two voltage vectors are applied during one sampling interval to achieve better steady-state performance. Finally, the optimal duration of the nonzero voltage vector is defined based on the duty cycle optimization, which is vital to the control system. The proposed strategy offers a better reference tracking error with less THD in linear and nonlinear load situations. The effectiveness of the proposed method has been verified by MATLAB/Simulink and experimental results exhibit a better steady-state performance with less sampling frequency.


Sign in / Sign up

Export Citation Format

Share Document