fourier series analysis
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Javier Segurado ◽  
Ricardo A. Lebensohn

AbstractA method based on the Fast Fourier Transform is proposed to obtain the dispersion relation of acoustic waves in heterogeneous periodic media with arbitrary microstructures. The microstructure is explicitly considered using a voxelized Representative Volume Element (RVE). The dispersion diagram is obtained solving an eigenvalue problem for Bloch waves in Fourier space. To this aim, two linear operators representing stiffness and mass are defined through the use of differential operators in Fourier space. The smallest eigenvalues are obtained using the implicitly restarted Lanczos and the subspace iteration methods, and the required inverse of the stiffness operator is done using the conjugate gradient with a preconditioner. The method is used to study the propagation of acoustic waves in elastic polycrystals, showing the strong effect of crystal anistropy and polycrystaline texture on the propagation. It is shown that the method combines the simplicity of classical Fourier series analysis with the versatility of Finite Elements to account for complex geometries proving an efficient and general approach which allows the use of large RVEs in 3D.


2021 ◽  
Vol 26 (1) ◽  
pp. 135-146
Author(s):  
Mansur I. Ismailov

We consider the Mullins’ equation of a single surface grooving when the surface diffusion is not considered as very slow. This problem can be formed by a surface grooving of profiles in a finite space region. The finiteness of the space region allows to apply the Fourier series analysis for one groove and also to consider the Mullins coefficient as well as slope of the groove root to be time-dependent. We also solve the inverse problem of finding time-dependent Mullins coefficient from total mass measurement. For both of these problems, the grooving side boundary conditions are identical to those of Mullins, and the opposite boundary is accompanied by a zero position and zero curvature which both together arrive at self adjoint boundary conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Bo Peng ◽  
Ching-Hsing Luo ◽  
Nilotpal Sinha ◽  
Cheng-Chi Tai ◽  
Xiaohua Xie ◽  
...  

In this article, a three-dimensional pulse image (3DPI) instead of a one-dimensional temporal pulse wave is studied to elucidate its spatiotemporal characteristics. To check the spatial and temporal properties of 3DPI, adopted is Fourier series, in which a ratio (r) is defined as one amplitude divided by the sum of the first three amplitudes of harmonics. A ratio sequence is constituted from 70 to 90 ratios in a heartbeat with 70–90 3DPIs by sampling. Twenty-four subjects (14 males and 10 females with age of 22.2 ± 3.7 years, 20.4 ± 1.4 BMI, and 112.1 ± 4.7 mmHg systolic blood pressure) are involved in this research. There are significant statistical differences in the groups of the normal, taut, and slippery 3DPIs by the first harmonic ratio average (r1¯) and ratio difference (Δr1) produced from the ratio sequence. The proposed method of this study gives us a novel viewpoint to clarify the spatiotemporal characteristics of pulse images, which can translate and quantize the pulse feeling in Chinese medicine texts.


Author(s):  
Safia Abdullah Al Fadhel, Amal Al-Ser Al-khadir, Obeid Mahmo

:   This paper takes into account the application of the Periodogram and the Fourier Series Analysis. It is one of the non-parametric methods of Frequency domain analysis or spectral analysis of time series using Gas sales data in the United States of America from 1993-2014. In order to achieve these objectives، the data were obtained and then the Periodogram and the Fourier series methods were used to analyze the data. Based on the analysis، the cycle of variability within the period under study was 135 months، and a high Accuracy data model was estimated for the Fourier series which included trend، seasonal and error components. The RMSE، MASE and MAE standards were used to confirm the efficiency of the model and the model was then used to predict gas sales for six months، and we have 90% 95% confidence intervals for predictions. In addition، a time domain analysis was provided for the data series using Bok Jenkins method to obtain the appropriate ARMA model and to generate Predictions. Finally، a comparison was made between the accuracy measures of the time domain and frequency domain methods The frequency domain method competed with the time domain and the slight difference in efficiency.


Author(s):  
Manana Chumburidze ◽  
David Lekveishvili

This paper is devoted to the development of approximation method for numerical solution of basic boundary-contact problems of coupled thermo-elasticity in the Green-Lindsay formulation. In particular, we consider a static system of partial differential equations for two-dimensional isotropic inhomogeneous elastic materials in assumptions that surfaces are sufficiently smooth. The tools applied in this development are based on singular integral equations, the potential method and the generalized Fourier series analysis.


2017 ◽  
Vol 24 (1) ◽  
pp. 201-219 ◽  
Author(s):  
C. Kavitha ◽  
S. Denis Ashok

AbstractThe spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. TheCircular Hough Transform(CHT) is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.


Sign in / Sign up

Export Citation Format

Share Document