scholarly journals ELICITATION OF PLANT DEFENSE AGAINST FUSARIUM OXYSPORUM F.SP. CICERIS IN CHICKPEA PLANT USING MARINE MICROCOCCUS SP.

2020 ◽  
Vol 10 (3) ◽  
pp. 361-365
Author(s):  
Palak Patel
1997 ◽  
Vol 87 (1) ◽  
pp. 108-122 ◽  
Author(s):  
Nicole Benhamou ◽  
Patrice Rey ◽  
Mohamed Chérif ◽  
John Hockenhull ◽  
Yves Tirilly

The influence exerted by the mycoparasite Pythium oligandrum in triggering plant defense reactions was investigated using an experimental system in which tomato plants were infected with the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. To assess the antagonistic potential of P. oligandrum against F. oxysporum f. sp. radicis-lycopersici, the interaction between the two fungi was studied by scanning and transmission electron microscopy (SEM and TEM, respectively). SEM investigations of the interaction region between the fungi demonstrated that collapse and loss of turgor of F. oxysporum f. sp. radicis-lycopersici hyphae began soon after close contact was established with P. oligandrum. Ultrastructural observations confirmed that intimate contact between hyphae of P. oligandrum and cells of the pathogen resulted in a series of disturbances, including generalized disorganization of the host cytoplasm, retraction of the plasmalemma, and, finally, complete loss of the protoplasm. Cytochemical labeling of chitin with wheat germ agglutinin (WGA)/ovomucoid-gold complex showed that, except in the area of hyphal penetration, the chitin component of the host cell walls was structurally preserved at a time when the host cytoplasm had undergone complete disorganization. Interestingly, the same antagonistic process was observed in planta. The specific labeling patterns obtained with the exoglucanase-gold and WGA-ovomucoid-gold complexes confirmed that P. oligandrum successfully penetrated invading cells of the pathogen without causing substantial cell wall alterations, shown by the intense labeling of chitin. Cytological investigations of samples from P. oligandrum-inoculated tomato roots revealed that the fungus was able to colonize root tissues without inducing extensive cell damage. However, there was a novel finding concerning the structural alteration of the invading hyphae, evidenced by the frequent occurrence of empty fungal shells in root tissues. Pythium ingress in root tissues was associated with host metabolic changes, culminating in the elaboration of structural barriers at sites of potential fungal penetration. Striking differences in the extent of F. oxysporum f. sp. radicis-lycopersici colonization were observed between P. oligandrum-inoculated and control tomato plants. In control roots, the pathogen multiplied abundantly through much of the tissues, whereas in P. oligandrum-colonized roots pathogen growth was restricted to the outermost root tissues. This restricted pattern of pathogen colonization was accompanied by deposition of newly formed barriers beyond the infection sites. These host reactions appeared to be amplified compared to those seen in nonchallenged P. oligandrum-infected plants. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. Wall appositions contained large amounts of callose, in addition to be infiltrated with phenolic compounds. The labeling pattern obtained with gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged P. oligandrum-inoculated tomato roots. Such compounds accumulated in the host cell walls and intercellular spaces. The wall-bound chitin component in Fusarium hyphae colonizing P. oligandrum-inoculated roots was preserved at a time when hyphae had undergone substantial degradation. These observations provide the first convincing evidence that P. oligandrum has the potential to induce plant defense reactions in addition to acting as a mycoparasite.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Medha L. Upasani ◽  
Bhakti M. Limaye ◽  
Gayatri S. Gurjar ◽  
Sunitha M. Kasibhatla ◽  
Rajendra R. Joshi ◽  
...  

2010 ◽  
Vol 9 (4) ◽  
pp. 558-568 ◽  
Author(s):  
Hyeseung Lee ◽  
Barbara Damsz ◽  
Charles P. Woloshuk ◽  
Ray A. Bressan ◽  
Meena L. Narasimhan

ABSTRACT Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR ( Fusarium O smotin R esistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 282
Author(s):  
Marwa Drira ◽  
Jihen Elleuch ◽  
Hajer Ben Hlima ◽  
Faiez Hentati ◽  
Christine Gardarin ◽  
...  

Polysaccharides from marine algae are one novel source of plant defense elicitors for alternative and eco-friendly plant protection against phytopathogens. The effect of exopolysaccharides (EPS) produced by Porphyridium sordidum on elicitation of Arabidopsis thaliana defense responses against Fusarium oxysporum was evaluated. Firstly, in order to enhance EPS production, a Box–Behnken experimental design was carried out to optimize NaCl, NaNO3 and MgSO4 concentrations in the culture medium of microalgae. A maximum EPS production (2.45 g/L) higher than that of the control (0.7 g/L) was observed for 41.62 g/L NaCl, 0.63 g/L NaNO3 and 7.2 g/L MgSO4 concentrations. Structurally, the EPS contained mainly galactose, xylose and glucose. Secondly, the elicitor effect of EPS was evaluated by investigating the plant defense-related signaling pathways that include activation of Salicylic or Jasmonic Acid-dependent pathway genes. A solution of 2 mg/mL of EPS has led to the control of fungal growth by the plant. Results showed that EPS foliar application induced phenylalaline ammonia lyase and H2O2 accumulation. Expression profile analysis of the defense-related genes using qRT-PCR revealed the up-regulation of Superoxide dismutases (SOD), Peroxidase (POD), Pathogenesis-related protein 1 (PR-1) and Cytochrome P450 monooxyge-nase (CYP), while Catalase (CAT) and Plant defensin 1.2 (PDF1.2) were not induced. Results suggest that EPS may induce the elicitation of A. thaliana’s defense response against F. oxysporum, activating the Salicylic Acid pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shan Li ◽  
Jun Hai ◽  
Zie Wang ◽  
Jie Deng ◽  
Tingting Liang ◽  
...  

Root rot, mainly caused by Fusarium oxysporum, is the most destructive disease affecting lily (Lilium spp.) production. The WRKY transcription factors (TFs) have important roles during plant immune responses. To clarify the effects of WRKY TFs on plant defense responses to pathogens, a WRKY gene (LrWRKY2) was isolated from Lilium regale Wilson, which is a wild lily species highly resistant to F. oxysporum. The expression of LrWRKY2, which encodes a nuclear protein, is induced by various hormones (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) and by F. oxysporum infection. In this study, LrWRKY2-overexpressing transgenic tobacco plants were more resistant to F. oxysporum than the wild-type plants. Moreover, the expression levels of jasmonic acid biosynthetic pathway-related genes (NtAOC, NtAOS, NtKAT, NtPACX, NtJMT, NtOPR, and NtLOX), pathogenesis-related genes (NtCHI, NtGlu2, and NtPR-1), and antioxidant stress-related superoxide dismutase genes (NtSOD, NtCu-ZnSOD, and MnSOD) were significantly up-regulated in LrWRKY2 transgenic tobacco lines. Additionally, the transient expression of a hairpin RNA targeting LrWRKY2 increased the susceptibility of L. regale scales to F. oxysporum. Furthermore, an F. oxysporum resistance gene (LrCHI2) encoding a chitinase was isolated from L. regale. An electrophoretic mobility shift assay demonstrated that LrWRKY2 can bind to the LrCHI2 promoter containing the W-box element. Yeast one-hybrid assay results suggested that LrWRKY2 can activate LrCHI2 transcription. An examination of transgenic tobacco transformed with LrWRKY2 and the LrCHI2 promoter revealed that LrWRKY2 activates the LrCHI2 promoter. Therefore, in L. regale, LrWRKY2 is an important positive regulator that contributes to plant defense responses to F. oxysporum by modulating LrCHI2 expression.


Sign in / Sign up

Export Citation Format

Share Document