defense proteins
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 58)

H-INDEX

34
(FIVE YEARS 5)

Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Huihui Zhao ◽  
Xiaobing Wang ◽  
Wei Wang

Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juliana da Silva Fonseca ◽  
Laura Fernandes de Barros Marangoni ◽  
Joseane Aparecida Marques ◽  
Adalto Bianchini

The frequency and severity of coral bleaching events have increased in recent years. Global warming and contamination are primarily responsible for triggering these responses in corals. Thus, the objective of this study was to evaluate the isolated and combined effects of elevated temperature and exposure to copper (Cu) on responses of the antioxidant defense system of coral Mussismilia harttii. In a marine mesocosm, fragments of the coral were exposed to three temperatures (25.0, 26.6, and 27.3°C) and three concentrations of Cu (2.9, 5.4, and 8.6 μg/L) for up to 12 days. Levels of reduced glutathione (GSH) and the activity of enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutamate cysteine ligase (GCL), were evaluated on the corals and symbionts. The short exposure to isolated and combined stressors caused a reduction in GSH levels and inhibition of the activity of antioxidant enzymes. After prolonged exposure, the combination of stressors continued to reduce GSH levels and SOD, CAT, and GCL activity in symbionts and GST activity in host corals. GCL activity was the parameter most affected by stressors, remaining inhibited after 12-days exposure. Interesting that long-term exposure to stressors stimulated antioxidant defense proteins in M. harttii, demonstrating a counteracting response that may beneficiate the oxidative state. These results, combined with other studies already published suggest that the antioxidant system should be further studied in order to understand the mechanisms of tolerance of South Atlantic reefs.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 266-267
Author(s):  
Bharath Kumar Mulakala ◽  
Eluka-Okoludoh Eboghoye ◽  
Kingsley Ekwemalor ◽  
Mulumebet Worku

Abstract The objective of this study was to assess the expression and secretion of Galectins (Gal) in cow milk. Cow milk contains a range of proteins of moderate or low abundance that contribute to host defense. However, host defense proteins in milk were not fully discovered. Galectins belong to the lectin family that recognizes specific carbohydrates on cells and involved in innate immune responses. Holstein Friesian cows (n = 16) from North Carolina A&T diary unit were used for this study. Based on the Dairy Heard farm index, eight cows each were assigned to the high or low SCC group. Total RNA was isolated from somatic cells converted to cDNA, for real-time PCR. Cow-specific Gal primers were designed using the NCBI Primer 3 tool. Housekeeping genes RPLP0, UCHL5, and beta-actin were served as internal controls. Total whey protein concentration was determined using a BCA kit. Secretion of Gal was assessed using a specific ELISA kit. Data were analyzed using the Proc ANOVA procedure in SAS 9.4. Galectin was transcribed and secreted in milk. Transcription of Galectin was different in both HSCC and LSCC groups. Total protein concentration remained the same in both groups. Secretion of galectins was different between the HSCC and LSCC group but not significantly. The observed difference in HSCC and LSCC cows warrants further study using more animals; this will aid in a better definition of the role of Gal in the milk host defense. These may also aid as the diagnostic biomarkers for certain infections.


2021 ◽  
Vol 22 (19) ◽  
pp. 10733
Author(s):  
Md. Mezanur Rahman ◽  
Mohammad Golam Mostofa ◽  
Sanjida Sultana Keya ◽  
Md. Nurealam Siddiqui ◽  
Md. Mesbah Uddin Ansary ◽  
...  

Soil salinization, which is aggravated by climate change and inappropriate anthropogenic activities, has emerged as a serious environmental problem, threatening sustainable agriculture and future food security. Although there has been considerable progress in developing crop varieties by introducing salt tolerance-associated traits, most crop cultivars grown in saline soils still exhibit a decline in yield, necessitating the search for alternatives. Halophytes, with their intrinsic salt tolerance characteristics, are known to have great potential in rehabilitating salt-contaminated soils to support plant growth in saline soils by employing various strategies, including phytoremediation. In addition, the recent identification and characterization of salt tolerance-related genes encoding signaling components from halophytes, which are naturally grown under high salinity, have paved the way for the development of transgenic crops with improved salt tolerance. In this review, we aim to provide a comprehensive update on salinity-induced negative effects on soils and plants, including alterations of physicochemical properties in soils, and changes in physiological and biochemical processes and ion disparities in plants. We also review the physiological and biochemical adaptation strategies that help halophytes grow and survive in salinity-affected areas. Furthermore, we illustrate the halophyte-mediated phytoremediation process in salinity-affected areas, as well as their potential impacts on soil properties. Importantly, based on the recent findings on salt tolerance mechanisms in halophytes, we also comprehensively discuss the potential of improving salt tolerance in crop plants by introducing candidate genes related to antiporters, ion transporters, antioxidants, and defense proteins from halophytes for conserving sustainable agriculture in salinity-prone areas.


2021 ◽  
Author(s):  
YaFan Chan ◽  
Chia-Yu Chen ◽  
Chih-Ying Lu ◽  
Yung-Chi Tu ◽  
Kshitij Tandon ◽  
...  

Endozoicomonas, a core bacterial group in corals, may also be a coral symbiont. Endozoicomonas communities often decrease rapidly in corals under heat stress. However, how the bacteria respond to changes in temperature and coral host during heat stress is unknown. Here, we employed the cultivable, dominant species E. montiporae as a working organism to explore how Endozoicomonas responds to heat stress. We designed two experiments to clarify the extent to which E. montiporae is influenced by temperature and coral host. We detected differentially expressed protein (DEP) profiles in this bacterium at 31°C and 33°C compared to 25°C by tandem mass tags-based quantitative proteome analysis. Fifty DEPs, including many heat shock proteins, were detected when the temperature changed. The expression of antioxidant defense proteins and key pyruvate synthase proteins decreased, suggesting that E. montiporae were in a physiology of stress at 33°C. Furthermore, some proteins were differentially expressed because of the heat-stress-treated coral lysate specifically, suggesting that not only heat but also heat-induced host factors can affect the protein expression of the bacterium. This study provides an in-depth analysis of how the molecular mechanisms of Endozoicomonas are affected by heat stress and coral host.


2021 ◽  
Author(s):  
Zhe Zeng ◽  
Lucas M. Wijnands ◽  
Sjef Boeren ◽  
Eddy J. Smid ◽  
Richard A. Notebaart ◽  
...  

Listeria monocytogenes is a facultative anaerobe which can cause a severe food-borne infection known as listeriosis. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded by L. monocytogenes in aerobic and anaerobic conditions into lactate, acetate and 1,2-propanediol. Our previous study showed that addition of vitamin B12 stimulates anaerobic growth of L. monocytogenes on rhamnose due to the activation of bacterial microcompartment (BMC)-dependent 1,2-propanediol utilization with concomitant production of propionate and propanol. Notably, anaerobic propanediol metabolism has been linked to virulence of enteric pathogens including Salmonella spp. and L. monocytogenes. In this study we investigate the impact of B12 on aerobic and anerobic growth of L. monocytogenes on rhamnose, and observed growth stimulation and pdu BMC activation only in anaerobically grown cells with B12 added to the medium. Comparative Caco-2 virulence assays, showed that these pdu BMC induced cells have significantly higher translocation efficiency compared to aerobically grown cells (without and with added B12) and non-induced anaerobically grown cells, while adhesion and invasion capacity is similar for all cells. Comparative proteomics analysis showed specific and overlapping responses linked to metabolic shifts, activation of stress defense proteins and virulence factors, with RNA polymerase sigma factor SigL; teichoic acids export ATP-binding protein, TagH; DNA repair and protection proteins RadA and DPS; and glutathione synthase GshAB previously linked to activation of virulence response in L. monocytogenes, uniquely upregulated in anaerobically rhamnose grown pdu BMC induced cells. Our results shed new light into B12 impact on L. monocytogenes competitive fitness and virulence.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5001
Author(s):  
Marcelo Farina ◽  
Leonardo Eugênio Vieira ◽  
Brigitta Buttari ◽  
Elisabetta Profumo ◽  
Luciano Saso

Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.


2021 ◽  
Vol 2 ◽  
Author(s):  
Annageldi Tayyrov ◽  
Chunyue Wei ◽  
Céline Fetz ◽  
Aleksandr Goryachkin ◽  
Philipp Schächle ◽  
...  

Fungi are an attractive food source for predators such as fungivorous nematodes. Several fungal defense proteins and their protective mechanisms against nematodes have been described. Many of these proteins are lectins which are stored in the cytoplasm of the fungal cells and bind to specific glycan epitopes in the digestive tract of the nematode upon ingestion. Here, we studied two novel nematotoxic proteins with lipase domains from the model mushroom Coprinopsis cinerea. These cytoplasmically localized proteins were found to be induced in the vegetative mycelium of C. cinerea upon challenge with fungivorous nematode Aphelenchus avenae. The proteins showed nematotoxicity when heterologously expressed in E. coli and fed to several bacterivorous nematodes. Site-specific mutagenesis of predicted catalytic residues eliminated the in-vitro lipase activity of the proteins and significantly reduced their nematotoxicity, indicating the importance of the lipase activity for the nematotoxicity of these proteins. Our results suggest that cytoplasmic lipases constitute a novel class of fungal defense proteins against predatory nematodes. These findings improve our understanding of fungal defense mechanisms against predators and may find applications in the control of parasitic nematodes in agriculture and medicine.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 920
Author(s):  
Hye-Sun Lim ◽  
Kyeong-No Yoon ◽  
Jin Ho Chung ◽  
Yong-Seok Lee ◽  
Dong Hun Lee ◽  
...  

Ultraviolet (UV) radiation has a strong biological effect on skin biology, and it switches on adaptive mechanisms to maintain homeostasis in organs such as the skin, adrenal glands, and brain. In this study, we examined the adaptation of the body to repeated bouts of UVB radiation, especially with respect to the catecholamine synthesis pathway of the adrenal glands. The effects of UVB on catecholamine-related enzymes were determined by neurochemical and histological analyses. To evaluate catecholamine changes after chronic excessive UVB irradiation of mouse skin, we examined dopamine and norepinephrine levels in the adrenal glands and blood from UV-irradiated and sham-irradiated mice. We found that chronic excessive UVB exposure significantly reduced dopamine levels in both tissues but did not affect norepinephrine levels. In addition, UVB irradiation significantly increased the levels of related enzymes tyrosine hydroxylase and dopamine-β-hydroxylase. Furthermore, we also found that apoptosis-associated markers were increased and that oxidative defense proteins were decreased, which might have contributed to the marked structural abnormalities in the adrenal medullas of the chronically UVB-irradiated mice. This is the first evidence of the damage to the adrenal gland and subsequent dysregulation of catecholamine metabolism induced by chronic exposure to UVB.


Author(s):  
Lisa M. Pierce ◽  
Wendy E. Kurata

Mesenchymal stem cells (MSCs) help fight infection by promoting direct bacterial killing or indirectly by modulating the acute phase response, thereby decreasing tissue injury. Recent evidence suggests that extracellular vesicles (EVs) released from MSCs retain antimicrobial characteristics that may be enhanced by pretreatment of parent MSCs with the toll-like receptor 3 (TLR3) agonist poly(I:C). Our aim was to determine whether poly(I:C) priming can modify EV content of miRNAs and/or proteins to gain insight into the molecular mechanisms of their enhanced antimicrobial function. Human bone marrow-derived MSCs were cultured with or without 1 μg/ml poly(I:C) for 1 h and then conditioned media was collected after 64 h of culture in EV-depleted media. Mass spectrometry and small RNA next-generation sequencing were performed to compare proteomic and miRNA profiles. Poly(I:C) priming resulted in 49 upregulated EV proteins, with 21 known to be important in host defense and innate immunity. In contrast, EV miRNA content was not significantly altered. Functional annotation clustering analysis revealed enrichment in biological processes and pathways including negative regulation of endopeptidase activity, acute phase, complement and coagulation cascades, innate immunity, immune response, and Staphylococcus aureus infection. Several antimicrobial peptides identified in EVs remained unaltered by poly(I:C) priming, including dermcidin, lactoferrin, lipocalin 1, lysozyme C, neutrophil defensin 1, S100A7 (psoriasin), S100A8/A9 (calprotectin), and histone H4. Although TLR3 activation of MSCs improves the proteomic profile of EVs, further investigation is needed to determine the relative importance of particular functional EV proteins and their activated signaling pathways following EV interaction with immune cells.


Sign in / Sign up

Export Citation Format

Share Document