Virtual Reality vs. High-fidelity Manikin-Based Simulation: A Randomized Comparison Trial on Case Leadership Skills

Author(s):  
Maher M. Abulfaraj ◽  
Sean Tackett ◽  
Justin Jeffers ◽  
Todd P. Chang
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter E. Wais ◽  
Melissa Arioli ◽  
Roger Anguera-Singla ◽  
Adam Gazzaley

AbstractTherapeutic interventions have not yet been shown to demonstrate restorative effects for declining long-term memory (LTM) that affects many healthy older adults. We developed a virtual reality (VR) spatial wayfinding game (Labyrinth-VR) as a cognitive intervention with the hypothesis that it could improve detailed, high-fidelity LTM capability. Spatial navigation tasks have been used as a means to achieve environmental enrichment via exposure to and learning about novel and complex information. Engagement has been shown to enhance learning and has been linked to the vitality of the LTM system in the brain. In the current study, 48 older adults (mean age 68.7 ± 6.4 years) with average cognitive abilities for their age were randomly assigned to 12 h of computer game play over four weeks in either the Labyrinth-VR or placebo control game arms. Promptly before and after each participant’s treatment regimen, high-fidelity LTM outcome measures were tested to assess mnemonic discrimination and other memory measures. The results showed a post-treatment gain in high-fidelity LTM capability for the Labyrinth-VR arm, relative to placebo, which reached the levels attained by younger adults in another experiment. This novel finding demonstrates generalization of benefits from the VR wayfinding game to important, and untrained, LTM capabilities. These cognitive results are discussed in the light of relevant research for hippocampal-dependent memory functions.


2009 ◽  
Vol 24 (2) ◽  
pp. 366-370 ◽  
Author(s):  
Irina Kruglikova ◽  
Teodor P. Grantcharov ◽  
Asbjorn M. Drewes ◽  
Peter Funch-Jensen

2016 ◽  
Vol 10 (3) ◽  
Author(s):  
Yunhe Shen ◽  
Jack Norfleet ◽  
Zichen Zhao ◽  
David Hananel ◽  
Daniel Burke ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 73-109
Author(s):  
Zi Siang See ◽  
Lizbeth Goodman ◽  
Craig Hight ◽  
Mohd Shahrizal Sunar ◽  
Arindam Dey ◽  
...  

Abstract This research explores the development of a novel method and apparatus for creating spherical panoramas enhanced with high dynamic range (HDR) for high fidelity Virtual Reality 360 degree (VR360) user experiences. A VR360 interactive panorama presentation using spherical panoramas can provide virtual interactivity and wider viewing coverage; with three degrees of freedom, users can look around in multiple directions within the VR360 experiences, gaining the sense of being in control of their own engagement. This degree of freedom is facilitated by the use of mobile displays or head-mount-devices. However, in terms of image reproduction, the exposure range can be a major difficulty in reproducing a high contrast real-world scene. Imaging variables caused by difficulties and obstacles can occur during the production process of spherical panorama facilitated with HDR. This may result in inaccurate image reproduction for location-based subjects, which will in turn result in a poor VR360 user experience. In this article we describe a HDR spherical panorama reproduction approach (workflow and best practice) which can shorten the production processes, and reduce imaging variables, and technical obstacles and issues to a minimum. This leads to improved photographic image reproduction with fewer visual abnormalities for VR360 experiences, which can be adaptable into a wide range of interactive design applications. We describe the process in detail and also report on a user study that shows the proposed approach creates images which viewers prefer, on the whole, to those created using more complicated HDR methods, or to those created without the use of HDR at all.


2019 ◽  
Vol Volume 10 ◽  
pp. 627-634 ◽  
Author(s):  
Andreas Pierre Hvolbek ◽  
Philip Mørkeberg Nilsson ◽  
Francesco Sanguedolce ◽  
Lars Lund

Sign in / Sign up

Export Citation Format

Share Document