'Athlete's Heart' in Prepubertal Children

PEDIATRICS ◽  
1987 ◽  
Vol 79 (5) ◽  
pp. 800-804
Author(s):  
Thomas W. Rowland ◽  
Brian C. Delaney ◽  
Steven F. Siconolfi

Bradycardia, cardiomegaly, heart murmurs, and ECG changes are typically observed in adult endurance athletes, but frequency of such changes among children involved in sports training is unclear. Pediatricians need to be aware of whether these features of the " athlete's heart" occur in their patients, because such features may mimic those of cardiac disease. Fourteen prepubertal competitive male swimmers were evaluated by physical examination, ECG and echocardiogram, and findings were compared to those of a group of active but nontrained control boys. Lower resting heart rates and echocardiographic manifestations of chronic left ventricular volume overload were observed among the swimmers. These changes were not manifest on physical examination, however, and no significant ECG alterations were identified among the athletes. These findings indicate that, although features of the athlete's heart are present in children involved in endurance training, seldom will these findings simulate heart disease or be apparent on routine clinical examination.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kaspar Broch ◽  
Stefano deMarchi ◽  
Richard Massey ◽  
Svend Aakhus ◽  
Lars Gullestad ◽  
...  

Introduction: Elite endurance athletes often develop left ventricular dilatation comparable to that observed in aortic regurgitation (AR). Hypothesis: We hypothesized that the LV remodeling observed in athlete’s heart differs from that seen in AR, and that the difference may be attributed to different fiber stress distribution. Methods: Thirty asymptomatic patients with moderate to severe AR, 15 age matched elite endurance athletes (Athl) and 17 age matched healthy controls (C) where analyzed with 3D speckle tracking echocardiography. We calculated the ratio between peak systolic circumferential (CS) - and peak systolic longitudinal strain (LS) and end-systolic (ES) circumferential (ESSc) and meridional (ESSm) fiber stress. Results: LV ejection fraction in C, Athl and AR patients was (61 ± 2, 61 ± 3 and 62 ± 3%, respectively, p=NS). LV end-diastolic volume was 78 ± 11, 112 ± 13 and 117 ± 20 ml/m 2 in C, Athl and AR, respectively, (C vs AR and Athl, p<0.01, AR vs Athl, p=NS). A non-uniform contraction pattern with a rightward shift of the LS strain curve was observed in AR (Figure 1). The CS/LS ratio was 0.91 ± 0.11, 0.91 ± 0.16 and 1.12 ± 0.24 in C, Athl and AR, respectively, (AR vs C and Athl, p<0.01, C vs Athl, p=NS). Consistently, the ESSc/ESSm ratio was similar in C and Athl (1.75 ± 0.08 and 1.74 ± 0.07, respectively, p=NS) and lower in AR patients (1.67 ± 0.07, AR vs C and Athl, p<0.01), indicating a relative increase in meridional fiber stress in the AR group (Figure 2). Conclusions: We have demonstrated that LV remodeling in AR patients differs from athlete’s heart with similar LV volumes, and may be attributed to a shift in the circumferential-meridional fiber stress ratio in AR patients.


ESC CardioMed ◽  
2018 ◽  
pp. 2913-2916
Author(s):  
Michael Papadakis ◽  
Sanjay Sharma

‘Athlete’s heart’ is associated with several structural and electrophysiological adaptations, which are reflected on the 12-lead electrocardiogram (ECG) and imaging studies. Most studies investigating cardiac remodelling in athletes are based on cohorts of white, adult, male athletes competing in the most popular sports. Evidence suggests, however, that sporting discipline and the athlete’s gender and ethnicity are important determinants of cardiovascular adaptation to exercise. Athletes competing in endurance sports demonstrate more pronounced adaptations in comparison to athletes performing static or resistance training. The ECG of endurance athletes is more likely to demonstrate repolarization anomalies in the anterior leads and ventricular dilatation on imaging studies, causing considerable overlap with arrhythmogenic right ventricular cardiomyopathy and dilated cardiomyopathy. Female athletes exhibit less pronounced adaptations compared to males, in terms of the prevalence of ECG changes and absolute cardiac dimensions. Importantly, female endurance athletes are more likely to demonstrate eccentric hypertrophy compared to males, suggesting that concentric remodelling or hypertrophy in female endurance athletes is unlikely to be the consequence of physiological adaptation to training. The most pronounced paradigm of ethnically distinct cardiovascular adaptation to exercise stems from black athletes, who exhibit a significantly higher prevalence of repolarization anomalies and left ventricular hypertrophy compared to white athletes, making the differentiation between athlete’s heart and hypertrophic cardiomyopathy challenging in this ethnic group.


1980 ◽  
Vol 49 (3) ◽  
pp. 482-490 ◽  
Author(s):  
S. F. Flaim ◽  
W. J. Minteer

A rat model for chronic left ventricular volume overload (a-v fistula, 2 mo) was used to test the effects of acute exhaustive treadmill exercise (EX) (5 min, 70 ft/min, 0 degrees grade) on cardiocirculatory hemodynamics and cardiac output (CO) distribution during heart failure (HF). Control (C) and HF rats were studied at rest (R) and during the last minute of EX. Heart rate (HR), mean arterial pressure (MAP), and left ventricular end-diastolic (LVEDP) pressure were recorded and CO, blood flow (BF) to various regions, and total CO distribution were determined by the radioactive microsphere technique. In HF, biventricular hypertrophy and elevated LVEDP at R were correlated with an average shunt size equaling 37% of total CO. In both groups, CO and HR rose during EX with no change in MAP. Systemic CO in HF was reduced compared to C during both R and EX. BF to splanchnic, renal, cutaneous, and testicular circulations was compromised at R in HF, whereas only skeletal muscle BF was compromised in HF during EX. Data for CO distribution suggest that the major effect of HF during R was increased delivery to the coronary and the skeletal muscle beds at the expense of the cutaneous and renal beds, whereas %CO to the cerebral, hepatic, and gastrointestinal beds was spared. During EX, %CO to skeletal muscle beds in HF was attenuated compared to C, whereas that to the coronary bed was increased with no change in other regions.


2003 ◽  
Vol 177 (4) ◽  
pp. 467-472 ◽  
Author(s):  
M. Sundstedt ◽  
T. Jonason ◽  
T. Ahrén ◽  
S. Damm ◽  
L. Wesslén ◽  
...  

1981 ◽  
Vol 47 (5) ◽  
pp. 991-1004 ◽  
Author(s):  
Charles A. Boucher ◽  
John B. Bingham ◽  
Mary D. Osbakken ◽  
Robert D. Okada ◽  
H.William Strauss ◽  
...  

2009 ◽  
Vol 2 (5) ◽  
pp. 437-445 ◽  
Author(s):  
Dominic Lachance ◽  
Éric Plante ◽  
Andrée-Anne Bouchard-Thomassin ◽  
Serge Champetier ◽  
Élise Roussel ◽  
...  

1991 ◽  
Vol 4 (3) ◽  
pp. 339-346 ◽  
Author(s):  
M. M. Swindle ◽  
F. G. Spinale ◽  
A. C. Smith ◽  
R. E. Schumann ◽  
C. T. Green ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document