scholarly journals Simple connectedness of one space of complex-valued functions

2015 ◽  
Vol 23 ◽  
pp. 70
Author(s):  
A.M. Pas'ko

The spaces $\mathbb{C}{\Omega}_n$ have been defined. It has been established that the spaces $\mathbb{C}{\Omega}_n$, $n \geqslant 2$ are simply connected.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Hisashi Kasuya

AbstractFor a simply connected solvable Lie group G with a lattice Γ, the author constructed an explicit finite-dimensional differential graded algebra A*Γ which computes the complex valued de Rham cohomology H*(Γ\G, C) of the solvmanifold Γ\G. In this note, we give a quick introduction to the construction of such A*Γ including a simple proof of H*(A*Γ) ≅ H*(Γ\G, C).



1997 ◽  
Vol 39 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Ibrahim Assem ◽  
Peter Brown

Letkbe an algebraically closed field. By an algebra is meant an associative finite dimensionalk-algebra A with an identity. We are interested in studying the representation theory of Λ, that is, in describing the category mod Λ of finitely generated right Λ-modules. Thus we may, without loss of generality, assume that Λ is basic and connected. For our purpose, one strategy consists in using covering techniques to reduce the problem to the case where the algebra is simply connected, then in solving the problem in this latter case. This strategy was proved efficient for representation-finite algebras (that is, algebras having only finitely many isomorphism classes of indecomposable modules) and representation-finite simply connected algebras are by now well-understood: see, for instance [5], [7],[8]. While little is known about covering techniques in the representation-infinite case, it is clearly an interesting problem to describe the representation-infinite simply connected algebras. The objective of this paper is to give a criterion for the simple connectedness of a class of (mostly representationinfinite) algebras.



2015 ◽  
Vol 22 (04) ◽  
pp. 639-654
Author(s):  
Hailou Yao ◽  
Guoqiang Han

Let A be a connected minimal representation-infinite algebra over an algebraically closed field k. In this paper, we investigate the simple connectedness and strong simple connectedness of A. We prove that A is simply connected if and only if its first Hochschild cohomology group H1(A) is trivial. We also give some equivalent conditions of strong simple connectedness of an algebra A.



1987 ◽  
Vol 39 (6) ◽  
pp. 1489-1530 ◽  
Author(s):  
Yusuf Abu-Muhanna ◽  
Glenn Schober

Let D be a simply-connected domain and w0 a fixed point of D. Denote by SD the set of all complex-valued, harmonic, orientation-preserving, univalent functions f from the open unit disk U onto D with f(0) = w0. Unlike conformai mappings, harmonic mappings are not essentially determined by their image domains. So, it is natural to study the set SD.In Section 2, we give some mapping theorems. We prove the existence, when D is convex and unbounded, of a univalent, harmonic solution f of the differential equationwhere a is analytic and |a| < 1, such that f(U) ⊂ D and



Filomat ◽  
2013 ◽  
Vol 27 (4) ◽  
pp. 577-591 ◽  
Author(s):  
Sh. Chen ◽  
S. Ponnusamy ◽  
X. Wang

A 2p-times continuously differentiable complex-valued function ? = u + iv in a simply connected domain ? ? C is p-harmonic if ? satisfies the p-harmonic equation ?p? = 0. In this paper, we investigate the properties of p-harmonic mappings in the unit disk |z| < 1. First, we discuss the convexity, the starlikeness and the region of variability of some classes of p-harmonic mappings. Then we prove the existence of Landau constant for the class of functions of the form D? = z?z - ??z, where f is p-harmonic in |z| < 1. Also, we discuss the region of variability for certain p-harmonic mappings. At the end, as a consequence of the earlier results of the authors, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings.



Author(s):  
Piotr Malicki

AbstractWe study the simple connectedness of the class of finite-dimensional algebras over an algebraically closed field for which the Auslander–Reiten quiver admits a separating family of almost cyclic coherent components. We show that a tame algebra in this class is simply connected if and only if its first Hochschild cohomology space vanishes.



2017 ◽  
Vol 95 (3) ◽  
pp. 457-466 ◽  
Author(s):  
MAŁGORZATA MICHALSKA ◽  
ANDRZEJ M. MICHALSKI

We study properties of the simply connected sets in the complex plane, which are finite unions of domains convex in the horizontal direction. These considerations allow us to state new univalence criteria for complex-valued local homeomorphisms. In particular, we apply our results to planar harmonic mappings obtaining generalisations of the shear construction theorem due to Clunie and Sheil-Small [‘Harmonic univalent functions’, Ann. Acad. Sci. Fenn. Ser. A. I. Math.9 (1984), 3–25].



2011 ◽  
Vol 131 (1) ◽  
pp. 2-8
Author(s):  
Akira Hirose


Sign in / Sign up

Export Citation Format

Share Document