scholarly journals GAS TURBINE ENGINES IMPELLERS FORCED VIBRATION AND STRESS-STRAIN STATE INVESTIGATION

Author(s):  
S. Morhun

The method of the gas turbine engine impeller forced vibration and stress-strain state parameters calculation is given. Using the finite element method, a refined mathematical model was developed for the several types of impellers most widespread in the practice of gas turbine engines building. The developed mathematical model takes into consideration the impeller blades geometric parameters and the construction of blades connectors. The results of its forced vibration frequencies calculation, caused by the influence of non-stationary gas flow are given for different types of the blades connectors. The dependencies of the impeller blades stress-strain state from the value its feather geometric perameters have been studied too.  

1983 ◽  
Vol 15 (2) ◽  
pp. 268-272
Author(s):  
V. G. Bazhenov ◽  
Yu. I. Trostenyuk ◽  
N. I. Glushchenko ◽  
N. B. Krishevskii ◽  
V. Ya. Krivoshei

2018 ◽  
Vol 220 ◽  
pp. 03008
Author(s):  
Andrey Tkachenko ◽  
Viktor Rybakov ◽  
Evgeny Filinov

The paper describes the distinctive features of the altitude-velocity characteristics of detonation gas turbine engines. The necessity of developing a new type of gas turbine engines is substantiated and the main features of detonation engines are described. The principal constructive scheme of detonation gas turbine engines is presented. Developed the one-dimensional mathematical model of detonation gas turbine engine. This model describes a working process in a gas generator and a traction module. Its verification with a real prototype is performed. A number of studies were carried out using the developed mathematical model. A comparison of the pulsating engine with the classic afterburner was performed. From the obtained results it is concluded that detonation engines are more economical than the engines of traditional schemes. It was also revealed that it is possible to obtain a range of flight speeds depending on a certain height only by adjusting the gas generator according to different control laws. In this regard, the purpose of further work will be the development of a three-dimensional mathematical model of the detonation engine and the creation on its basis of a stand of virtual tests for further research.


2019 ◽  
Vol 18 (3) ◽  
pp. 67-80
Author(s):  
V. S. Kuz'michev ◽  
H. Omar ◽  
A. Yu. Tkachenko ◽  
A. A. Bobrik

Despite the fact that aviation gas turbine engines (GTE) have reached a high degree of sophistication, requirements for the improvement of their efficiency are constantly increasing. Reduction of specific fuel consumption and specific weight of the engine unit makes it possible to improve aircraft performance. One of the effective means of reducing specific fuel consumption and obtaining high thermal efficiency of a gas turbine engine is the use of heat recovery, so the interest in it holds throughout the period of development of gas turbine engines. However, the use of heat recovery in aircraft gas turbine engines is faced with a contradiction: on the one hand, heat recovery allows reducing specific fuel consumption, but, on the other hand, it increases the weight of the power plant due to the presence of a heat exchanger. Moreover, with the increase in the degree of regeneration, specific fuel consumption decreases, whereas the mass of the power plant increases.To obtain the desired effect, it is necessary to optimize simultaneously both the parameters of the engine work process and the degree of regeneration of the heat exchanger according to the criteria of evaluating the engine unit in the aircraft system. For this purpose, it is necessary to have a mathematical model for estimating the weight of a highly efficient aircraft heat exchanger. The article presents a developed mathematical model for calculating the weight of a compact plate heat exchanger used to increase the efficiency of a gas turbine engine due to the heating of compressed air entering the combustion chamber by the hot gas that enters the combustion chamber from behind the turbine. We chose a rational pattern of relative motion of the working media in the heat exchanger, the optimal type of plate-type heat transfer surface in terms of minimizing the weight of the heat exchanger and the hydraulic losses in the air and gas ducts. For the selected surface type, the dependence of the specific weight of the heat exchanger on the degree of regeneration is determined for different nozzle exhaust velocities on the basis of a computational algorithm. To assess the reliability of the obtained model, comparative analysis of the effect of the degree of regeneration on the specific weight of the heat exchanger was carried out, based on the comparison of the results of calculations for the developed model with the data of other authors and with the data for the produced regenerators.


2019 ◽  
Vol 22 (6) ◽  
pp. 8-16
Author(s):  
Sh. Ardeshiri

The current development trend of global civil aviation is the growth of passenger and freight traffic, which entails the consumption of jet fuel. Under these conditions, increasing the efficiency of jet fuel used is of great importance. Global energy consumption is constantly growing, and, first of all, the question of diversification of oil resources arises, resources from which the bulk of motor fuels is produced. Other types of raw energy sources (natural gas, coal, bio-mass) currently account for only a small part. However, an analysis of the development of jet fuels indicates that work is underway to obtain these from other sources of raw materials, especially bio-fuels. Much attention is given to obtaining bio-fuels from renewable sources – such as algae. The issue of the mass transition of civil aviation to alternative fuels is complex and requires the solution of intricate technical as well as economic issues. One of these is the assessment of the impact of new fuels on GTE performance. It is important to give an objective and quick assessment of the use of various types of fuels on the main characteristics of the engine – i.e., throttle and high-speed characteristics. In this case, it is necessary to take into account chemical processes in the chemical composition of new types of fuel. To assess the effect of fuels on the characteristics of a gas turbine engine, it is proposed to use a mathematical model that would take into account the main characteristics of the fuel itself. Therefore, the work proposes a mathematical model for calculating the characteristics of a gas turbine engine taking into account changes in the properties of the fuel itself. A comparison is made of the percentage of a mixture of biofuels and JetA1 kerosene, as well as pure JetA1 and TC-1 kerosene. The calculations, according to the proposed model, are consistent with the obtained characteristics of a gas turbine engine in operation when using JetA1 and TC-1 kerosene. Especially valuable are the obtained characteristics of a gas turbine engine depending on a mixture of biofuel and kerosene. It was found that a mixture of biofuel and kerosene changes the physicochemical characteristics of fuel and affects the change in engine thrust and specific fuel consumption. It is shown that depending on the obtained physicochemical properties of a mixture of biofuel and kerosene, it is possible to increase the fuel efficiency and environmental friendliness of the gas turbine engines used.


2017 ◽  
Vol 60 (4) ◽  
pp. 658-661 ◽  
Author(s):  
V. V. Murashkin ◽  
Ya. M. Klebanov ◽  
A. I. Danilchenko ◽  
I. E. Adeyanov

Sign in / Sign up

Export Citation Format

Share Document