scholarly journals Finite element analysis of a solar collector plate using two plate geometries

2016 ◽  
Vol 36 (3) ◽  
pp. 95
Author(s):  
Diego Manuel Medina Carril ◽  
José Gonzalo Carrillo Baeza ◽  
Ruben Dominguez Maldonado ◽  
Francis Aviles Cetina

The thermal behavior of an absorber plate in a solar collector is investigated using finite element analysis. The thermal behavior and efficiency of two absorber plate geometries are studied, using a typical solar collector with a rectangular profile as reference, and a proposed absorber plate with curved geometry. An analysis of the most important parameters involved in the design of the absorber plate was carried out, indicating that the curved geometry of the absorber plate yields an average efficiency ~25% higher than the conventional rectangular geometry. The results suggest that a curved profile made of materials such as aluminum with thermal conductivity higher than 200W/m°C, plate thickness of the order of 2-3mm and with a large density of tubes per unit area of the collector´s plate greatly benefits the thermal efficiency of the solar collector.

2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


Optik ◽  
2020 ◽  
Vol 208 ◽  
pp. 164128 ◽  
Author(s):  
Mobin Majeed ◽  
Murat Vural ◽  
Sufian Raja ◽  
M. Bilal Naim Shaikh

Author(s):  
Shivdayal Patel ◽  
B. P. Patel ◽  
Suhail Ahmad

Welding is one of the most used joining methods in the ship industry. However, residual stresses are induced in the welded joints due to the rapid heating and cooling leading to inhomogenously distributed dimensional changes and non-uniform plastic and thermal strains. A number of factors, such as welding speed, boundary conditions, weld geometry, weld thickness, welding current/voltage, number of weld passes, pre-/post-heating etc, influence the residual stress distribution. The main aim of this work is to estimate the residual stresses in welded joints through finite element analysis and to investigate the effects of boundary conditions, welding speed and plate thickness on through the thickness/surface distributions of residual stresses. The welding process is simulated using 3D Finite element model in ABAQUS FE software in two steps: 1. Transient thermal analysis and 2. Quasi-static thermo-elasto-plastic analysis. The normal residual stresses along and across the weld in the weld tow region are found to be significant with nonlinear distribution. The residual stresses increase with the increase in the thickness of the plates being welded. The nature of the normal residual stress along the weld is found to be tensile-compressive-tensile and the nature of normal residual stress across the weld is found to be tensile along the thickness direction.


Mechatronics ◽  
2016 ◽  
Vol 36 ◽  
pp. 119-126 ◽  
Author(s):  
R. Jerez-Mesa ◽  
J.A. Travieso-Rodriguez ◽  
X. Corbella ◽  
R. Busqué ◽  
G. Gomez-Gras

Optik ◽  
2020 ◽  
Vol 207 ◽  
pp. 163760 ◽  
Author(s):  
Junfeng Li ◽  
Zhengying Wei ◽  
Lixiang Yang ◽  
Bokang Zhou ◽  
Yunxiao Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document