scholarly journals Land use and biotic integrity in shallow streams of the Hondo River basin, Yucatan Peninsula, Mexico

2017 ◽  
Vol 65 (4) ◽  
pp. 1448
Author(s):  
Rodrigo I. Pacheco-Díaz ◽  
Juan J. Schmitter-Soto ◽  
Birgit Schmook ◽  
Gerald A. Islebe ◽  
Holger Weissenberger

Aquatic environments face a variety of threats in the Hondo River basin, Southeastern Yucatan Peninsula. Some of these impacts, like pollution by pesticides, may depend on land use and cover. Our objective was to assess the effect of land use/cover using a previously published index of biotic integrity (IBI), based on fishes and designed for shallow streams in the Hondo River basin. Our hypothesis was that land uses that cause deforestation and pollution, such as urbanization, cattle breeding, or sugar cane fields, would be reflected in low IBI values, at least at some spatial scales. The 23 sites originally used in 2008-2009 to estimate by electrofishing the relative abundance and other characteristics of selected fish species and guilds to construct the IBI, were revisited in February 2010, to validate by direct inspection the type of land use/cover suggested by landscape information in digital databases. We analyzed the effect of seven types of land use/cover (agriculture, pasture, human settlements, water bodies, wetlands, forest, and secondary vegetation) on the IBI values, at four spatial scales, i.e., the percent of every land use/cover at progressively larger circles (125, 250, 500, and 1 000 m diameter) centered on the water body where the IBI value was measured. Correlations were established among the percent land/use cover by scale around 23 sites, and with their corresponding IBI values. Then, Student’s t tests were calculated to examine significant differences in land use/cover between groups of localities above and below the median IBI value, and Mann-Whitney’s U tests were applied to compare IBI values between localities with and without a given landscape cover. Agriculture, human settlements, and secondary vegetation correlated negatively with the IBI; forests positively.  Differences were significant (p < 0.05) for forest (higher in sites with higher IBI values) and human settlements (lower in sites with higher IBI). Of all the landscape categories located in the Hondo River basin, with the exception of pasture, those of anthropogenic origin tended to be detrimental to aquatic biotic integrity.

2011 ◽  
Vol 409 (4) ◽  
pp. 844-852 ◽  
Author(s):  
Juan J. Schmitter-Soto ◽  
Lissie E. Ruiz-Cauich ◽  
Roberto L. Herrera ◽  
David González-Solís

2021 ◽  
Vol 56 (3) ◽  
pp. 480-490
Author(s):  
Tatiane Camila Martins Silva ◽  
Ima Célia Guimarães Vieira ◽  
Marcelo Cordeiro Thalês

The goal of this study was to determine the anthropization evolution of the Guamá river basin in the years 2000, 2008 and 2018 by means of the Anthropic Transformation Index. Land use and cover maps were obtained from two databases, Project Mapbiomas (Brazilian Annual Land Use and Land Cover Mapping Project) and PRODES (Project for the Satellite Monitoring of the Brazilian Amazon Forest). The main classes defined in the mapping process are: forest, natural non-forest vegetation, agriculture and livestock farming, secondary vegetation, urban infrastructure, water and others. Secondary vegetation was considered as the area where the forest classes of Mapbiomas intersects with the deforested areas of PRODES, as determined by the map algebra operator. The expansion of agriculture and livestock farming achieved an increase of about 10%, while the forest was reduced in almost 10%. The Guamá river basin obtained an Anthropic Transformation Index of 4.44 in 2000, 5.04 in 2008 and 5.09 in 2018, going from a regular to a degraded state in 18 years. The occupation process caused major alterations in the natural components of the landscape over the course of 18 years, notably in the amount of forest. Protection of 35% of the remnant primary forest in the Guamá river basin is vital for the conservation of water resources vulnerable to changes in land use.


2006 ◽  
Vol 34 ◽  
pp. 291-299 ◽  
Author(s):  
José Salvador Flores ◽  
Rita M. Vermont-Ricalde ◽  
Jesús Martín Kantún-Balam

SummaryIn this paper the diversity of the Leguminosae family in the Yucatán Peninsula is presented, explaining it by subfamilies, genus and species and in each of the three states of the Peninsula, as well as the distribution of the family in the different vegetation types and associations and in the secondary vegetation derived from both of them. The forage species that can be used combined with graminae to feed cattle like goats and sheep are also presented.


1988 ◽  
Vol 45 (3) ◽  
pp. 492-501 ◽  
Author(s):  
Robert J. Steedman

A multivariate measure of stream quality, the Index of Biotic Integrity (IBI), was adapted to southern Ontario and calibrated to watershed land use on a variety of spatial scales. The fish fauna at 209 stream locations on 10 watersheds near Toronto, Ontario, was sampled with a backpack electrofisher in the summers of 1984 and 1985 to provide biological information for the IBI. Watershed urbanization, forest cover, and riparian forest were measured from 1:50,000 scale topographic maps and related to IBI estimates by linear regression. Of the biological measures tested, species richness, local indicator species (brook trout (Salvelinus fontinalis) and Rhinichthys spp.), abundance of large piscivores, fish abundance, and incidence of blackspot disease were found to contribute significantly to IBI estimates. Variation in IBI estimates at the same location ranged from 0 to 8% within the sample season and from 0 to 24% between years. Linear models based on measures of watershed urbanization and forest cover accounted for 11–78% of the variation in IBI scores, depending on the spatial scale of the analysis. Significant IBI/land use relationships were found with whole-basin IBI estimates and for IBI estimates from individual stream reaches. Land use immediately upstream of sample stations was most strongly associated with stream quality as measured by the IBI.


2015 ◽  
Vol 20 (2) ◽  
pp. 54-60 ◽  
Author(s):  
S. Gyawali ◽  
K. Techato ◽  
S. Monprapusson

The study investigated the linkages between land uses and water quality in U-tapao river basin, Thailand, in order to examine the impact of land use changes on full -basin, sub-watershed and buffer zone scales (1000m, 500m and 200m) on river water quality through Geographical Information Systems (GIS) and statistical analyses. Correlation and regression analysis were applied for ten water quality parameters. In scale analysis, in the most cases, the sub-watershed scale showed the clear relationship between land use water quality rather than full-basin and buffer zone scales. This indicates that the level of relationship between land use and water quality depends upon scale therefore the relationship between water quality parameters and land uses should be studied in multiple scales and it helps to develop effective river basin management in future.Journal of Institute of Science and Technology, 2015, 20(2): 54-60


2020 ◽  
Vol 12 (3) ◽  
pp. 395 ◽  
Author(s):  
Sergio A. Cabrera-Cruz ◽  
Emily B. Cohen ◽  
Jaclyn A. Smolinsky ◽  
Jeffrey J. Buler

The distributions of birds during migratory stopovers are influenced by a hierarchy of factors. For example, in temperate regions, migrants are concentrated near areas of bright artificial light at night (ALAN) and also the coastlines of large water bodies at broad spatial scales. However, less is known about what drives broad-scale stopover distributions in the tropics. We quantified seasonal densities of nocturnally migrating landbirds during spring and fall of 2011–2015, using two weather radars on the Yucatan peninsula, Mexico (Sabancuy and Cancun). We tested the influence of environmental predictors in explaining broad-scale bird stopover densities. We predicted higher densities in areas (1) closer to the coast in the fall and farther away in spring and (2) closer to bright ALAN and with lower ALAN intensity in both seasons. We found that birds were more concentrated near the coastline in the fall and away from it in spring around Cancun but not Sabancuy. Counter to our expectations, we detected increased bird densities with increased distance from lights in spring around Sabancuy, and in both seasons around Cancun, suggesting avoidance of bright areas during those seasons. This is the first evidence of broad-scale bird avoidance of bright areas during stopover.


2014 ◽  
Vol 37 (2) ◽  
pp. 191-203
Author(s):  
A. H. Plasencia–Vázquez ◽  
◽  
G. Escalona–Segura ◽  
L. G. Esparza–Olguín ◽  
◽  
...  

The loss, degradation, and fragmentation of forested areas are endangering parrot populations. In this study, we determined the influence of fragmentation in relation to vegetation cover, land use, and spatial configuration of fragments on the potential geographical distribution patterns of parrots in the Yucatan Peninsula, Mexico. We used the potential geographical distribution for eight parrot species, considering the recently published maps obtained with the maximum entropy algorithm, and we incorporated the probability distribution for each species. We calculated 71 metrics/variables that evaluate forest fragmentation, spatial configuration of fragments, the ratio occupied by vegetation, and the land use in 100 plots of approximately 29 km², randomly distributed within the presence and absence areas predicted for each species. We also considered the relationship between environmental variables and the distribution probability of species. We used a partial least squares regression to explore patterns between the variables used and the potential distribution models. None of the environmental variables analyzed alone determined the presence/absence or the probability distribution of parrots in the Peninsula. We found that for the eight species, either due to the presence/absence or the probability distribution, the most important explanatory variables were the interaction among three variables, particularly the interactions among the total forest area, the total edge, and the tropical semi–evergreen medium– height forest. Habitat fragmentation influenced the potential geographical distribution of these species in terms of the characteristics of other environmental factors that are expressed together with the geographical division, such as the different vegetation cover ratio and land uses in deforested areas.


2017 ◽  
Vol 65 (4) ◽  
pp. 1554
Author(s):  
Anay Serrano-Rodríguez ◽  
Griselda Escalona Segura ◽  
Alexis H. Plasencia Vázquez ◽  
Eduardo E. Iñigo Elias ◽  
Lorena Ruiz-Montoya

Geographic distribution and habitat quality are key criteria for assessing the degree of risk of species extinction threat. Campylorhynchus yucatanicus (Yucatán Wren, Troglodytidae) is an endemic bird of the Northern coast of the Yucatán Peninsula, Mexico, with a distribution restricted to a narrow strip of habitat, between Campeche and Yucatán states. Currently, the Yucatán coast has lost more than half of the coastal dune vegetation, and other habitats have been modified mainly because there is no urban development plan and the natural resources management is poor. These factors threaten C. yucatanicus, which is listed as a near threatened species by IUCN and as an endangered species by Mexican law NOM-059-2010. In this paper, C. yucatanicus´s potential distribution was modeled using 64 presence records from several sources (1960 y 2009), a set of climate variables, and a vegetation index layer of normalized difference (NDVI). To assess the degree of landscape connectivity we used a map of vegetation types and land use, distance to villages and paved roads. The potential distribution model showed an area of approximately 2 711 km2, which is 2 % of the total area of the Yucatán Peninsula distribution. In this area, only 27 % is protected by Biosphere Reserve category and only 10 % belong to core conservation areas, with land use restrictions and relatively effective protection. The populations from Ría Lagartos and Western Celestún regions appear to be the most isolated following the model of landscape connectivity. Landscape permeability among fragments of dune vegetation near the coast is low, mainly due to the distribution of urban areas. These results can be used to establish management strategies, and show that the species is in more delicate conditions than what it has been described by IUCN. We consider that C. yucatanicus should be given endangered category by IUCN, because of their distribution and the context of the current landscape connectivity.


Sign in / Sign up

Export Citation Format

Share Document