COMPARATIVE ANALYSIS OF SOLAR MODULES OPERATION IN THE ARCTIC CLIMATE OF RUSSIA AND CANADA

Author(s):  
E. S. Bodrova ◽  
V. V. Dolgosheev ◽  
I. M. Kirpichnikova ◽  
D. V. Korobatov ◽  
A. S. Martyanov ◽  
...  
Author(s):  
Mark C. Serreze ◽  
Roger G. Barry

Author(s):  
A.A. Gorbunov ◽  
◽  
S.I. Shepelyuk ◽  
A.G. Nesterenko ◽  
K.I. Drapey ◽  
...  

2011 ◽  
Vol 80 (4) ◽  
pp. 459-484
Author(s):  
Yoshifumi Tanaka

AbstractThe determination of spatial ambit of the coastal State jurisdiction is fundamental for ocean governance and the same applies to the Arctic Ocean. In this regard, a question arises how it is possible to delimit marine spaces where the jurisdiction of two or more coastal States overlaps. Without rules on maritime delimitation in marine spaces where the jurisdiction of coastal States overlaps, the legal uses of these spaces cannot be enjoyed effectively. In this sense, maritime delimitation is of paramount importance in the Arctic Ocean governance. Thus, this study will examine Arctic maritime delimitations by comparing them to the case law concerning maritime delimitation. In so doing, this study seeks to clarify features of Arctic maritime delimitations.


2006 ◽  
Vol 63 (3) ◽  
pp. 401-420 ◽  
Author(s):  
Harald Yndestad

Abstract The Arctic Ocean is a substantial energy sink for the northern hemisphere. Fluctuations in its energy budget will have a major influence on the Arctic climate. The paper presents an analysis of the time-series for the polar position, the extent of Arctic ice, sea level at Hammerfest, Kola section sea temperature, Røst winter air temperature, and the NAO winter index as a way to identify a source of dominant cycles. The investigation uses wavelet transformation to identify the period and the phase in these Arctic time-series. System dynamics are identified by studying the phase relationship between the dominant cycles in all time-series. A harmonic spectrum from the 18.6-year lunar nodal cycle in the Arctic time-series has been identified. The cycles in this harmonic spectrum have a stationary period, but not stationary amplitude and phase. A sub-harmonic cycle of about 74 years may introduce a phase reversal of the 18.6-year cycle. The signal-to-noise ratio between the lunar nodal spectrum and other sources changes from 1.6 to 3.2. A lunar nodal cycle in all time-series indicates that there is a forced Arctic oscillating system controlled by the pull of gravity from the moon, a system that influences long-term fluctuations in the extent of Arctic ice. The phase relation between the identified cycles indicates a possible chain of events from lunar nodal gravity cycles, to long-term tides, polar motions, Arctic ice extent, the NAO winter index, weather, and climate.


2021 ◽  
Author(s):  
Rajka Juhrbandt ◽  
Suvarchal Cheedela ◽  
Nikolay Koldunov ◽  
Thomas Jung

<p>The recently completed Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) can serve as reference to evaluate current and future ocean state of the Arctic Ocean. With this premise, we perform a virtual MOSAiC expedition in historical and ssp370-scenario experiments in data generated by CMIP6 models.<br><br>The timespan covered ranges from preindustrial times (1851-1860) through present-day up to a 4K world (2091-2100). Early results using AWI-CM model, suggest that for scenario simulations a thinning of the colder surface layer and a warming of the layer between 200 and 1200 m along the MOSAiC path can be expected, while there is no significant change in temperature below this depth. Results from other models will be presented.<br><br>The Python-centric tool used for the analysis simplifies preprocessing of a pool of CMIP6 data and selecting data on space-time trajectory. It exposes an interface that is agnostic to underlying model or its grid type. Code snippets are presented along to demonstrate the tool's ease of use with a hope to inspire such virtual field campaigns using other past observations or arbitrary trajectories.</p>


2016 ◽  
Author(s):  
R. L. Tilling ◽  
A. Ridout ◽  
A. Shepherd

Abstract. Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea ice thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with an average thickness difference of 5 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast delivery product also provides measurements of Arctic sea ice thickness within three days of acquisition by the satellite, and a measurement is delivered, on average, within 10, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea ice thickness dataset provides an additional constraint for seasonal predictions of Arctic climate change, and will allow industries such as tourism and transport to navigate the polar oceans with safety and care.


2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


Sign in / Sign up

Export Citation Format

Share Document