scholarly journals Role of soil microbes in sustainable crop production and soil health: A review

2021 ◽  
Vol 13 (Volume 13, Issue 2) ◽  
pp. 109-118
Author(s):  
K.K. Shah ◽  
S. Tripathi ◽  
I. Tiwari ◽  
J. Shrestha ◽  
B. Modi ◽  
...  

Abstract. Global food production needs to be increased in order to feed the world’s growing population and at the same time, the reliance on inorganic fertilizers and pesticides should be minimized. To accomplish this goal, the various beneficial associations between plants and soil microorganisms should be explored. The soil microbes are bacteria, actinomycetes, viruses, fungi, nematode, and protozoa. They have an important soil function that has fulfilled several useful tasks in the soil system. Microbes support biological nitrogen fixation of different biological transformations that support the accumulation and utilization of key nutrients, support root and shoot growth processes, disease control, and improve soil quality in crop cultivation. Soil microbes offer nutrient-dense nourishment improved crop production and recycle soil solutions. They play an essential role in decomposing organic matter, cycling nutrients, and fertilizing the soil. Besides, they improve plant growth on various physiological parameters of plants by a number of mechanisms. The mechanism involved in growth promotion includes plant growth regulators, production of different metabolites, and conversion of atmospheric nitrogen into ammonia in direct and indirect ways. In addition, soil microbes offer resistance against diseases. This review outlines the significant impact of soil microbes on sustainable agricultural growth, the benefits of microbes in maintaining soil health, and their interactions.

2020 ◽  
Vol 7 (3) ◽  
pp. 144-150
Author(s):  
Sujata Kumari ◽  
◽  
Narender K. Bharat ◽  
Ashok K. Thakur ◽  
◽  
...  

The bioagents like Plant Growth Promoting Rhizobacteria (PGPR) and Biocontrol Agents (BCAs) play a crucial role in plant growth promotion, nutrient uptake and suppression of biotic and abiotic stresses. Different researchers have applied these bioagents by various means either through seed treatment or through soil application to prevent various plant diseases. Thus, these non-chemical environment friendly tools can be exploited to enhance crop production.


2021 ◽  
Author(s):  
Supriya Sharma ◽  
Nirupa Kumari ◽  
Birendra Prasad

After the nitrogen phosphorus is the second most important plant nutrient to necessary for plant development and growth. The use of excess phosphate fertilizers potentially causes surface and ground water pollutions and soil fertility depletation and accumulation of phosphate in soil which is unavailable for plant. Biofertilizers play a very significant role in improving soil fertility by fixing atmospheric nitrogen, both, in association with plant roots and without it, solubilized insoluble soil phosphates and produces plant growth substances in the soil. There have been a number of reports on plant growth promotion by microorganisms that have the ability to solubilize inorganic and organic P from soil. There is a dynamic and complex relationship among the different forms of P involving soil, plant and microorganisms. Microorganisms can enhance the capacity of plants to acquire P from soil through various mechanisms. They are able to solubilize unavailable form of unsolubilized phosphate in available form. Purpose of this review is to focuses on the understanding of the mechanism of phosphate solubilisation their role of PSMs(phosphate solubilizing microorganisms) in crop production as biofertilizers.


Symbiosis ◽  
2016 ◽  
Vol 72 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Liliana Mercedes Ludueña ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
Germán Barros ◽  
María Flavia Luna ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12245
Author(s):  
Manoj Kumar ◽  
Ved Prakash Giri ◽  
Shipra Pandey ◽  
Anmol Gupta ◽  
Manish Kumar Patel ◽  
...  

Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Francesca Mapelli ◽  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Marta Barbato ◽  
Hanene Cherif ◽  
...  

Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres ofSalicorniaplants and bulk soils were collected fromSebkhetandChotthypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated withSalicorniaroot system. A large collection of 475 halophilic and halotolerant bacteria was established fromSalicorniarhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. TwentyHalomonasstrains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activitiesin vitroat 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using agfp-labelled strain it was possible to demonstrate thatHalomonasis capable of successfully colonisingSalicorniaroots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.


Author(s):  
Surendra Singh Jatav ◽  
Manoj Parihar ◽  
Abhik Patra ◽  
Satish Kumar Singh ◽  
Manoj Kumar Chitara ◽  
...  

2019 ◽  
Vol 103 (9) ◽  
pp. 3887-3897 ◽  
Author(s):  
Shaozu Xu ◽  
Yonghui Xing ◽  
Song Liu ◽  
Qiaoyun Huang ◽  
Wenli Chen

Sign in / Sign up

Export Citation Format

Share Document