seed endophytes
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 24)

H-INDEX

5
(FIVE YEARS 3)

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1987
Author(s):  
Francesca Vannucchi ◽  
Valeria Imperato ◽  
Anabel Saran ◽  
Svetoslav Staykov ◽  
Jan D’Haen ◽  
...  

Seed endophyte inoculation can enhance the plant tolerance to pollutants, which allows plant cultivation on trace element (TE) polluted soils. Methylobacterium sp. CP3 and Kineococcus endophyticus CP19 were tested in vitro for their tolerance to Zn and Cd and their plant growth promotion traits. The in vivo effects of bioaugmentation with individual strains or both strains were tested using two poplar cultivars, Populus deltoides x (P. trichocarpa x P. maximowiczii) ‘Dender’ and ‘Marke’, grown in TE polluted soil for six weeks. Methylobacterium sp. was found to grow on media enriched with 0.4 and 0.8 mM Cd, and both endophytes tolerated 0.6 and 1 mM Zn, due to the presence of genes involved in Zn and Cd tolerance and transport. Methylobacterium sp. showed an extracellular ion sequestration mechanism. Production of indole-3-acetic acid by Methylobacterium sp. and K. endophyticus, as well as phosphorus solubilization by Methylobacterium sp. were observed. Bioaugmentation with both endophytes increased the shoot length of Populus ‘Marke’ and enhanced the Mg uptake in both cultivars. Inoculation with Methylobacterium sp. reduced the bioaccumulation of Zn in ‘Marke’, conferring it an excluder strategy. Methylobacterium sp. and K. endophyticus seemed to improve the plant nutritional status, which can alleviate abiotic stress.


2021 ◽  
Vol 288 (1956) ◽  
pp. 20210621
Author(s):  
Lukas P. Bell-Dereske ◽  
Sarah E. Evans

Leaf fungal endophytes (LFEs) contribute to plant growth and responses to stress. Fungi colonize leaves through maternal transmission, e.g. via the seed, and through environmental transmission, e.g. via aerial dispersal. The relative importance of these two pathways in assembly and function of the LFE community is poorly understood. We used amplicon sequencing to track switchgrass ( Panicum virgatum ) LFEs in a greenhouse and field experiment as communities assembled from seed endophytes and rain fungi (integration of wet and dry aerial dispersal) in germinating seeds, seedlings, and adult plants. Rain fungi varied temporally and hosted a greater portion of switchgrass LFE richness (greater than 65%) than were found in seed endophytes (greater than 25%). Exposure of germinating seeds to rain inoculum increased dissimilarity between LFE communities and seed endophytes, increasing the abundance of rain-derived taxa, but did not change diversity. In the field, seedling LFE composition changed more over time, with a decline in seed-derived taxa and an increase in richness, in response to environmental transmission than LFEs of adult plants. We show that environmental transmission is an important driver of LFE assembly, and likely plant growth, but its influence depends on both the conditions at the time of colonization and plant life stage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mulla S. Ayesha ◽  
Trichur S. Suryanarayanan ◽  
Karaba N. Nataraja ◽  
Siddegowda Rajendra Prasad ◽  
Ramanan Uma Shaanker

Pre-sowing seed treatment with systemic fungicides is a firmly entrenched practice for most agricultural crops worldwide. The treatment is intended to protect the crop against seed- and soil-borne diseases. In recent years, there is increasing evidence that fungicidal applications to manage diseases might inadvertently also affect non-target organisms, such as endophytes. Endophytes are ubiquitously present in plants and contribute to plant growth and development besides offering resistance to biotic and abiotic stresses. In seeds, endophytes may play a role in seed development, seed germination, seedling establishment and crop performance. In this paper, we review the recent literature on non-target effects of fungicidal applications on endophytic fungal community and discuss the possible consequences of indiscriminate seed treatment with systemic fungicide on seed endophytes. It is now well recognized that endophytes are ubiquitously present in all parts of the plant, including the seeds. They may be transmitted vertically from seed to seed as in many grasses and/or acquired horizontally from the soil and the environment. Though the origins and evolution of these organisms in plants are a matter of conjecture, numerous studies have shown that they symbiotically aid in plant growth and development, in nutrient acquisition as well in protecting the plants from abiotic and biotic stresses. Against this background, it is reasonable to assume that the use of systemic fungicides in seed treatment may not only affect the seed endophytes but also their attendant benefits to seedling growth and establishment. While there is evidence to indicate that fungicidal applications to manage plant diseases also affect foliar endophytes, there are only few studies that have documented the effect of seed treatment on seed-borne endophytes. Some of the convincing examples of the latter come from studies on the effect of fungicide application on rye grass seed endophyte AR37. More recently, experiments have shown that removal of seed endophytes by treatment with systemic fungicides leads to significant loss of seedling vigour and that such losses could be partially restored by enriching the seedlings with the lost endophytes. Put together, these studies reinforce the importance of seed endophytes to seedling growth and establishment and draw attention on how to trade the balance between the benefits of seed treatments and the direct and indirect costs incurred due to loss of endophytes. Among several approaches, use of reduced-risk fungicides and identifying fungicide-resistant endophytes are suggested to sustain the endophyte contribution to early seedling growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seorin Jeong ◽  
Tae-Min Kim ◽  
Byungwook Choi ◽  
Yousuk Kim ◽  
Eunsuk Kim

AbstractThe mutualistic relationship between alien plant species and microorganisms is proposed to facilitate or hinder invasive success, depending on whether plants can form novel associations with microorganisms in the introduced habitats. However, this hypothesis has not considered seed endophytes that would move together with plant propagules. Little information is available on the seed endophytic bacteria of invasive species and their effects on plant performance. We isolated the seed endophytic bacteria of a xerophytic invasive plant, Lactuca serriola, and examined their plant growth-promoting traits. In addition, we assessed whether these seed endophytes contributed to plant drought tolerance. Forty-two bacterial species were isolated from seeds, and all of them exhibited at least one plant growth-promoting trait. Kosakonia cowanii occurred in all four tested plant populations and produced a high concentration of exopolysaccharides in media with a highly negative water potential. Notably, applying K. cowanii GG1 to Arabidopsis thaliana stimulated plant growth under drought conditions. It also reduced soil water loss under drought conditions, suggesting bacterial production of exopolysaccharides might contribute to the maintenance of soil water content. These results imply that invasive plants can disperse along with beneficial bacterial symbionts, which potentially improve plant fitness and help to establish alien plant species.


Author(s):  
J. Sai Prasad ◽  
K. Aswini ◽  
Pushpendra Sharma ◽  
Shrikant Gond ◽  
Archna Suman

Mycorrhiza ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 103-115
Author(s):  
Mohamed Idbella ◽  
Giuliano Bonanomi ◽  
Francesca De Filippis ◽  
Ghita Amor ◽  
Fatima Ezzahra Chouyia ◽  
...  

2020 ◽  
Vol 96 (9) ◽  
Author(s):  
Iva Franić ◽  
René Eschen ◽  
Eric Allan ◽  
Martin Hartmann ◽  
Salome Schneider ◽  
...  

ABSTRACT Recent studies revealed a high diversity of fungal endophytes in traded tree seeds, including potential plant pathogens. The factors determining richness and composition of seed mycobiomes are poorly understood, but might be an important determinant for tree health. We assessed the relative impact of host identity, site, several site-specific environmental factors, and whether the host was sampled in its native or non-native distribution range, on the richness and composition of fungal seed endophytes of nine tree species across 15 sites in Europe and North America. Our results show that fungal richness was affected by host identity, but not by environmental variables or host distribution range. Fungal community composition was primarily driven by host identity, and to a lesser extent by environment. Around 25% of the 2147 amplicon sequence variants (ASVs) were generalists appearing on both continents and in both gymnosperms and angiosperms. Around 63% of the ASVs appeared in only gymnosperms or angiosperms, and 33% of the ASVs were associated with a single host species, while none were found in all tree species. Our results suggest that although seed trade might facilitate movements of fungi, their establishment and spread in the new environment might be limited by host availability.


2020 ◽  
Author(s):  
Mehdi Mehrabi ◽  
Bita Asgari ◽  
Rasoul Zare

Abstract We describe Allocanariomyces tritici gen et sp. nov. and Achaetomium aegilopis sp. nov. as seed endophytes of wheat and its poaceous relatives in the west and northwestern provinces of Iran using morphological traits and sequences of ITS region, partial LSU rDNA, β-tubulin and the second largest subunit of DNA-directed RNA polymerase II genes. Chaetomium iranianum, C. truncatulum and C. carinthiacum are also combined here under the new genus, Parachaetomium. Allocanariomyces is differentiated from the closest genus, Canariomyces by having solitary, glabrous perithecia with walls of textura epidermoidea, stalked asci, densely granular-ornamented ascospores with a distinct subapical germ pore, and producing only solitary conidia. Parachaetomium has fusiform or navicular ascospores not bilaterally flattened, compared to Chaetomium with limoniform to globose, bilaterally flattened ascospores. Achaetomium aegilopis is mainly distinguished from A. strumarium, the closest relative, by possessing brown, often scattered perithecia, hyaline perithecial hairs covered with many hyaline crystals, hyaline chlamydospores, and lacking of the asexual morph.


Sign in / Sign up

Export Citation Format

Share Document