scholarly journals Assessing the microbial communities inhabiting drinking water networks and nitrifying enrichments with special respect on nitrifying microorganisms

Author(s):  
Zsuzsanna Nagymáté ◽  
Katalin Nemes-Barnás ◽  
Gergely Krett ◽  
Károly Márialigeti
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 899
Author(s):  
Djordje Mitrovic ◽  
Miguel Crespo Chacón ◽  
Aida Mérida García ◽  
Jorge García Morillo ◽  
Juan Antonio Rodríguez Diaz ◽  
...  

Studies have shown micro-hydropower (MHP) opportunities for energy recovery and CO2 reductions in the water sector. This paper conducts a large-scale assessment of this potential using a dataset amassed across six EU countries (Ireland, Northern Ireland, Scotland, Wales, Spain, and Portugal) for the drinking water, irrigation, and wastewater sectors. Extrapolating the collected data, the total annual MHP potential was estimated between 482.3 and 821.6 GWh, depending on the assumptions, divided among Ireland (15.5–32.2 GWh), Scotland (17.8–139.7 GWh), Northern Ireland (5.9–8.2 GWh), Wales (10.2–8.1 GWh), Spain (375.3–539.9 GWh), and Portugal (57.6–93.5 GWh) and distributed across the drinking water (43–67%), irrigation (51–30%), and wastewater (6–3%) sectors. The findings demonstrated reductions in energy consumption in water networks between 1.7 and 13.0%. Forty-five percent of the energy estimated from the analysed sites was associated with just 3% of their number, having a power output capacity >15 kW. This demonstrated that a significant proportion of energy could be exploited at a small number of sites, with a valuable contribution to net energy efficiency gains and CO2 emission reductions. This also demonstrates cost-effective, value-added, multi-country benefits to policy makers, establishing the case to incentivise MHP in water networks to help achieve the desired CO2 emissions reductions targets.


2021 ◽  
Vol 411 ◽  
pp. 128519
Author(s):  
Tahir Maqbool ◽  
Jiaxing Zhang ◽  
Yanling Qin ◽  
Muhammad Bilal Asif ◽  
Quang Viet Ly ◽  
...  

mSystems ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Koji Yasuda ◽  
Tiffany Hsu ◽  
Carey A. Gallini ◽  
Lauren J. Mclver ◽  
Emma Schwager ◽  
...  

ABSTRACT Fluoride has been added to drinking water and dental products since the 1950s. The beneficial effects of fluoride on oral health are due to its ability to inhibit the growth of bacteria that cause dental caries. Despite widespread human consumption of fluoride, there have been only two studies of humans that considered the effect of fluoride on human-associated microbial communities, which are increasingly understood to play important roles in health and disease. Notably, neither of these studies included a true cross-sectional control lacking fluoride exposure, as study subjects continued baseline fluoride treatment in their daily dental hygiene routines. To our knowledge, this work (in mice) is the first controlled study to assess the independent effects of fluoride exposure on the oral and gut microbial communities. Investigating how fluoride interacts with host-associated microbial communities in this controlled setting represents an effort toward understanding how common environmental exposures may potentially influence health. Fluoridation of drinking water and dental products prevents dental caries primarily by inhibiting energy harvest in oral cariogenic bacteria (such as Streptococcus mutans and Streptococcus sanguinis), thus leading to their depletion. However, the extent to which oral and gut microbial communities are affected by host fluoride exposure has been underexplored. In this study, we modeled human fluoride exposures to municipal water and dental products by treating mice with low or high levels of fluoride over a 12-week period. We then used 16S rRNA gene amplicon and shotgun metagenomic sequencing to assess fluoride’s effects on oral and gut microbiome composition and function. In both the low- and high-fluoride groups, several operational taxonomic units (OTUs) belonging to acidogenic bacterial genera (such as Parabacteroides, Bacteroides, and Bilophila) were depleted in the oral community. In addition, fluoride-associated changes in oral community composition resulted in depletion of gene families involved in central carbon metabolism and energy harvest (2-oxoglutarate ferredoxin oxidoreductase, succinate dehydrogenase, and the glyoxylate cycle). In contrast, fluoride treatment did not induce a significant shift in gut microbial community composition or function in our mouse model, possibly due to absorption in the upper gastrointestinal tract. Fluoride-associated perturbations thus appeared to have a selective effect on the composition of the oral but not gut microbial community in mice. Future studies will be necessary to understand possible implications of fluoride exposure for the human microbiome. IMPORTANCE Fluoride has been added to drinking water and dental products since the 1950s. The beneficial effects of fluoride on oral health are due to its ability to inhibit the growth of bacteria that cause dental caries. Despite widespread human consumption of fluoride, there have been only two studies of humans that considered the effect of fluoride on human-associated microbial communities, which are increasingly understood to play important roles in health and disease. Notably, neither of these studies included a true cross-sectional control lacking fluoride exposure, as study subjects continued baseline fluoride treatment in their daily dental hygiene routines. To our knowledge, this work (in mice) is the first controlled study to assess the independent effects of fluoride exposure on the oral and gut microbial communities. Investigating how fluoride interacts with host-associated microbial communities in this controlled setting represents an effort toward understanding how common environmental exposures may potentially influence health.


Author(s):  
Jean C. Salazar ◽  
Fatiha Nejjari ◽  
Ramon Sarrate ◽  
Philippe Weber ◽  
Didier Theilliol

Sign in / Sign up

Export Citation Format

Share Document