Development of a Reversed-Phase High-Performance Thin-Layer Chromatography Method for the Simultaneous Determination of Trigonelline and Diosgenin Biomarkers in Trigonella foenum-graecum L. Seeds Grown in Variable Environment

2019 ◽  
Vol 32 (5) ◽  
pp. 379-384 ◽  
Author(s):  
Ahmed I. Foudah ◽  
Prawez Alam ◽  
Mohammed H. Alqarni ◽  
Mohammad Ayman A. Salkini ◽  
Maged S. Abdel-Kader
Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 405
Author(s):  
Prawez Alam ◽  
Faiyaz Shakeel ◽  
Abuzer Ali ◽  
Mohammed H. Alqarni ◽  
Ahmed I. Foudah ◽  
...  

There has been no assessment of the greenness of the described analytical techniques for the simultaneous determination (SMD) of caffeine and paracetamol. As a result, in comparison to the greener normal-phase high-performance thin-layer chromatography (HPTLC) technique, this research was conducted to develop a rapid, sensitive, and greener reversed-phase HPTLC approach for the SMD of caffeine and paracetamol in commercial formulations. The greenness of both techniques was calculated using the AGREE method. For the SMD of caffeine and paracetamol, the greener normal-phase and reversed-phase HPTLC methods were linear in the 50–500 ng/band and 25–800 ng/band ranges, respectively. For the SMD of caffeine and paracetamol, the greener reversed-phase HPTLC approach was more sensitive, accurate, precise, and robust than the greener normal-phase HPTLC technique. For the SMD of caffeine paracetamol in commercial PANEXT and SAFEXT tablets, the greener reversed-phase HPTLC technique was superior to the greener normal-phase HPTLC approach. The AGREE scores for the greener normal-phase and reversed-phase HPTLC approaches were estimated as 0.81 and 0.83, respectively, indicated excellent greenness profiles for both analytical approaches. The greener reversed-phase HPTLC approach is judged superior to the greener normal-phase HPTLC approach based on numerous validation parameters and pharmaceutical assays.


Sign in / Sign up

Export Citation Format

Share Document