scholarly journals Computer aided designing and modelling of spur gear pairs having normal and modified straight teeth

2019 ◽  
Vol 10 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Sándor Bodzás

The aim of this publication is to show the process of computer aided designing of the spur gear pairs having normal and modified straight teeth. For designing, the determination of the geometrical parameters is needed. Computer programs have been developed with which gear pairs having normal and modified teeth, with any arbitrary parameters can be analysed, designed and modelled. With these programs gear pairs having concrete geometry have been designed and CAD models have also been drawn to have further meshing, geometrical and TCA (Tooth Contact Analysis).

Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 20 ◽  
Author(s):  
Gajarajan Sivayogan ◽  
Ramin Rahmani ◽  
Homer Rahnejat

Energy efficiency and functional reliability are the two key requirements in the design of high-performance transmissions. Therefore, a representative analysis replicating real operating conditions is essential. This paper presents the thermoelastohydrodynamic lubrication (TEHL) of meshing spur gear teeth of high-performance racing transmission systems, where high generated contact pressures and lubricant shear lead to non-Newtonian traction. The determination of the input contact geometry of meshing pairs as well as contact kinematics are essential steps for representative TEHL. These are incorporated in the current analysis through the use of Lubricated Loaded Tooth Contact Analysis (LLTCA), which is far more realistic than the traditional Tooth Contact Analysis (TCA). In addition, the effects of lubricant and flash surface temperature rise of contacting pairs, leading to the thermal thinning of lubricant, are taken into account using a thermal network model. Furthermore, high-speed contact kinematics lead to shear thinning of the lubricant and reduce the film thickness under non-Newtonian traction. This comprehensive approach based on established TEHL analysis, particularly including the effect of LLTCA on the TEHL of spur gears, has not hitherto been reported in literature.


2010 ◽  
Vol 43 ◽  
pp. 279-282
Author(s):  
Kai Xu ◽  
Xiao Zhong Deng ◽  
Jian Jun Yang ◽  
Guan Qiang Dong

Based on Tooth Contact Analysis (TCA), a feasible approach for Transmission Error (TE) of planetary gear train is proposed in this paper. With a view to getting the total TE curve of the planetary gear train, a specific analysis of the TE from the planetary gear train with only one planet should be proceed firstly, the second step is to calculate each phase difference of planets in the gear train. The applicable conditions for the simplified calculation are spur gear or involute gear pairs in the gear train. Due to equal space between them, planets have the same phase angle.


2004 ◽  
Vol 127 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Vilmos Simon

A method for computer aided loaded tooth contact analysis in different types of cylindrical worm gears is proposed. The method covers both cases—that of the theoretical line and point contact. The geometry and kinematics of a worm gear pair based on the generation of worm gear teeth by a hob is presented. The full loaded tooth contact analysis of such a gear pair is performed. A computer program based on the theoretical background presented has been developed. By using this program the path of contact, the potential contact lines, the separations of mating surfaces along these contact lines, the load distribution and transmission errors for different types of modified and nonmodified worm gear pairs are calculated and graphically presented. The influence of gear tooth modifications on tooth contact is investigated and discussed.


2019 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Callum Oglieve ◽  
Gajarajan Sivayogan ◽  
Homer Rahnejat ◽  
Mahdi Mohammadpour

2019 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
Callum Oglieve ◽  
Gajarajan Sivayogan ◽  
Mahdi Mohammadpour ◽  
Homer Rahnejat

2013 ◽  
Vol 392 ◽  
pp. 151-155
Author(s):  
Zheng Li ◽  
Yang Chen

The gear meshing is a very complicated process due to the nonlinear behaviors during the teeth contact. It is necessary to build a reliable model to simulate gear meshing process which can consider geometry and boundary conditions nonlinear behavior in gear tooth contact analysis. This paper propose a 3D finite element model to simulate the meshing process of a pair of spur gears, and then carry out the gear tooth contact analysis with the consideration of nonlinear behaviors. The results and relevant discussions will indicate and explain some significant phenomena of the gear tooth contact characteristics in gear meshing process.


2014 ◽  
Vol 5 ◽  
pp. 1801-1809 ◽  
Author(s):  
Santosh Patil ◽  
Saravanan Karuppanan ◽  
Ivana Atanasovska ◽  
Azmi A. Wahab

2013 ◽  
Vol 341-342 ◽  
pp. 572-576 ◽  
Author(s):  
Jin Fu Du ◽  
Zong De Fang ◽  
Min Xu ◽  
Xing Long Zhao ◽  
Yu Min Feng

The geometry of the tooth surface is important for tooth contact analysis, load tooth contact analysis and the ease-off of gear pairs. This paper presents a mathematical model for the determination of the tooth geometry of Klingelnberg face-hobbed hypoid gears. The formulation for the generation of gear and pinion tooth surfaces and the equations for the tooth surface coordinates are provided in the paper. The surface coordinates and normal vectors are calculated and tooth surfaces and 3D tooth geometries of gear and pinion are obtained. This method may also applied to other face-hobbing gears.


2020 ◽  
Vol 44 (4) ◽  
pp. 145-154
Author(s):  
Piotr Polowniak ◽  
Mariusz Sobolak ◽  
Adam Marciniec

AbstractThe paper presents the method of determining geometric contact pattern by using the direct computer-aided design (CAD) method for ideal globoid worm gear in which mounting deviations are considered. The tooth contact analysis was performed for all cycle of worm rotation. Based on the results of temporary contact pattern, graphical characteristics of the contact area size depending on worm position were made. A complete analysis of the correctness of gear meshing can be obtained based on presented method. If the worm or worm wheel is incorrectly designed in terms of the geometry, the meshing simulation of CAD models can indicate the collision. Geometric contact pattern analyses were made at two pressure angles of ideal gear. The analysis of the influence of mounting deviations was done against one selected pressure angle and one gear position.


Sign in / Sign up

Export Citation Format

Share Document