contact pattern
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
pp. 027836492110377
Author(s):  
Baxi Chong ◽  
Tianyu Wang ◽  
Jennifer M. Rieser ◽  
Bo Lin ◽  
Abdul Kaba ◽  
...  

Sidewinding is a form of locomotion executed by certain snakes and has been reconstructed in limbless robots; the gait is beneficial because it is effective in diverse terrestrial environments. Sidewinding gaits are generated by coordination of horizontal and vertical traveling waves of body undulation: the horizontal wave largely sets the direction of sidewinding with respect to the body frame while the vertical traveling wave largely determines the contact pattern between the body and the environment. When the locomotor’s center of mass leaves the supporting polygon formed by the contact pattern, undesirable locomotor behaviors (such as unwanted turning or unstable oscillation of the body) can occur. In this article, we develop an approach to generate desired translation and turning by modulating the vertical wave. These modulations alter the distribution of body–environment contact patches and can stabilize configurations that were previously statically unstable. The approach first identifies the spatial frequency of the vertical wave that statically stabilizes the locomotor for a given horizontal wave. Then, using geometric mechanics tools, we design the coordination between body waves that produces the desired translation or rotation. We demonstrate the effectiveness of our technique in numerical simulations and on experiments with a 16-joint limbless robot locomoting on flat hard ground. Our scheme broadens the range of movements and behaviors accessible to sidewinding locomotors at low speeds, which can lead to limbless systems capable of traversing diverse terrain stably and/or rapidly.


2021 ◽  
Vol 49 ◽  
pp. 101305
Author(s):  
Kaibin Rong ◽  
Han Ding ◽  
Xiannian Kong ◽  
Rong Huang ◽  
Jinyuan Tang

Author(s):  
Jeong-Gil Kim ◽  
◽  
Seung-Je Cho ◽  
Dong-Keun Lee ◽  
Joo-Young Oh ◽  
...  

Friction ◽  
2021 ◽  
Author(s):  
Albert Albers ◽  
Thomas Klotz ◽  
Chris Fink ◽  
Sascha Ott

AbstractThe design of dry-running friction pairings and systems determines not only their installation space and costs, but also their reliability under critical load conditions, for example in emergencies, in the case of faults, and in the event of misuse. While knowledge of the contact pattern is highly important for the development of clutches and brakes, the contact-related measurement of the temperature of these systems has not yet been solved in a satisfactory manner. Despite its importance, the temperature distribution has only been measured in a few studies. Typically, temperature measurements of complete clutches and brakes are carried out using thermocouples only. In this study, a new innovative test setup is presented. This setup is able to measure the heat distribution of the lining and the steel disk of a brake with high spatial resolution by means of fiber optic sensing technology and thermography. As a novelty, it enables measurement of the heat distribution and allows to correlate it with the fade and recovery behavior. Contrary to the expectations, the contact pattern is heterogeneous in circumferential direction. Possible causes are discussed using simulation results. Along with surface analysis, the new setup contributes to the investigation of the causes of fade and recovery.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251759
Author(s):  
Haruka Kagawa ◽  
Masato Kaku ◽  
Taeko Yamamoto ◽  
Yuka Yashima ◽  
Hiromi Sumi ◽  
...  

This study aimed to evaluate improvement of tongue-palatal contact patterns during swallowing after orthognathic surgery in mandibular prognathism patients. Thirty patients with mandibular prognathism treated by orthognathic surgery (average age of 27 years, 3 months) and 10 controls (average age 29 years, 6 months) participated in this study. Tongue-palatal contact patterns of patients before and three months after surgery were evaluated by electropalatography (EPG) as well as controls. Whole total of tongue-palatal contact at 0.3, 0.2, and 0.1 sec before complete tongue-palatal contact during swallowing were evaluated. The duration of swallowing phases was also examined. Complete contact of tongue-tip in the alveolar part of individual artificial EPG plate were shown at 0.3, 0.2, and 0.1 sec before complete tongue-palatal contact in the controls, although incomplete contact in the alveolar part were shown at 0.3 sec in mandibular prognathism patients. Whole total of tongue-palatal contact at 0.3 and 0.2 sec before complete tongue-palatal contact was significantly lower in the patients before surgery than in the controls (p<0.05). However, these values increased after surgery. The duration of oral and pharyngeal phase was significantly longer in the patients before surgery than in the controls and the patients after surgery (p<0.01). This study demonstrated that the tongue-palatal contact pattern improved and the duration of oral and pharyngeal phase was shortened in mandibular prognathism patients during swallowing after orthognathic surgery. It is suggested that changes in maxillofacial morphology by orthognathic surgery can induce normal tongue movement during swallowing. (The data underlying this study have been uploaded to figshare and are accessible using the following DOI: https://doi.org/10.6084/m9.figshare.14101616.v1)


2021 ◽  
Vol 8 ◽  
Author(s):  
Hiroaki Tanaka ◽  
Tsung-Yuan Chen ◽  
Koh Hosoda

Dynamic locomotion of a quadruped robot emerges from interaction between the robot body and the terrain. When the robot has a soft body, dynamic locomotion can be realized using a simple controller. This study investigates dynamic turning of a soft quadruped robot by changing the phase difference among the legs of the robot. We develop a soft quadruped robot driven by McKibben pneumatic artificial muscles. The phase difference between the hind and fore legs is fixed whereas that between the left and right legs is changed to enable the robot to turn dynamically. Since the robot legs are soft, the contact pattern between the legs and the terrain can be varied adaptively by simply changing the phase difference. Experimental results demonstrate that changes in the phase difference lead to changes in the contact time of the hind legs, and as a result, the soft robot can turn dynamically.


Sign in / Sign up

Export Citation Format

Share Document