scholarly journals Physiological effects of proinsulin-connecting peptide in human subcutaneous adipose tissue

2017 ◽  
Vol 104 (2) ◽  
pp. 193-205
Author(s):  
A Ghorbani ◽  
R Shafiee-Nick ◽  
SA Zojaji ◽  
MT Rajabi-Mashhadi

Recent studies suggest that proinsulin-connecting peptide (C-peptide) may exhibit characteristics of a hormone and show physiological functions in various tissues. This study was aimed to determine whether C-peptide could be involved in the regulation of lipolysis, adiponectin release, and function of mesenchymal stem cells (MSCs) in adipose tissue. Human subcutaneous adipose tissue was cultured in the presence of C-peptide. The level of lipolysis was determined by glycerol measurement in the conditioned media. Effect of C-peptide on adiponectin secretion was evaluated in differentiated adipocytes. The adipogenic and osteogenic abilities of adipose MSCs were evaluated using oil red and alizarin red staining, respectively. The tetrazolium bromide test was conducted for evaluating the effect of C-peptide on MSCs proliferation. C-peptide induced a significant decrease in basal lipolysis at concentrations of 8 and 16 nM (p < 0.05). It had no significant effects on isoproterenol-stimulated lipolysis, adiponectin secretion, and adipogenic or osteogenic differentiation of MSCs. At a concentration of 4 nM, this peptide significantly increased the proliferative capability of MSCs (p < 0.05). These results suggest that C-peptide has some physiological effects in human subcutaneous adipose tissue and contributes to the regulation of basal lipolysis and pool of MSCs.

2017 ◽  
Vol 26 (5) ◽  
pp. 855-866 ◽  
Author(s):  
Sang Woo Lee ◽  
Jae Uk Chong ◽  
Seon Ok Min ◽  
Seon Young Bak ◽  
Kyung Sik Kim

Falciform ligaments in the liver are surrounded by adipose tissue. We investigated the capability of adipose-derived stem cells from human liver falciform ligaments (hLF-ADSCs) to differentiate into hepatic-type cells and confirmed the functional capacity of the cells. Mesenchymal stem cells (MSCs) were isolated from the liver falciform ligament and abdominal subcutaneous adipose tissue in patients undergoing partial hepatectomy for liver disease. Cells were cultivated in MSC culture medium. Properties of MSCs were confirmed by flow cytometry, RT-PCR analysis, immunocytochemistry assays, and multilineage differentiation. Hepatic induction was performed using a three-step differentiation protocol with various growth factors. Morphology, capacity for expansion, and characteristics were similar between hLF-ADSCs and adipose-derived stem cells from human abdominal subcutaneous adipose tissue (hAS-ADSCs). However, hematopoietic– and mesenchymal–epithelial transition (MET)-related surface markers (CD133, CD34, CD45, and E-cadherin) had a higher expression in hLF-ADSCs. The hepatic induction marker genes had a higher expression in hLF-ADSCs on days 7 and 10 after the hepatic induction. Albumin secretion was similar between hLF-ADSCs and hAS-ADSCs at 20 days after the hepatic induction. The hLF-ADSCs had a different pattern of surface marker expression relative to hAS-ADSCs. However, proliferation, multilineage capacity, and hepatic induction were similar between the cell types. Accordingly, it may be a useful source of MSCs for patients with liver disease.


2008 ◽  
Vol 20 (1) ◽  
pp. 223
Author(s):  
A. Lima ◽  
E. Monaco ◽  
S. Wilson ◽  
D. Kim ◽  
C. Feltrin ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose (ADSCs) and bone marrow (MSCs) and their differentiated progeny must be compared in an animal model that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the osteoblastic lineage and to compare their morphological, phenotypic, and genotypic properties. MSCs and ADSCs were isolated respectively from femurs and subcutaneous adipose tissue of adult pigs and cultured in vitro using DMEM supplemented with 10% fetal bovine serum (FBS), 1% penicillin G-streptomycin, and 5.6 mg L–1 amphotericin B. After 3 passages, cells were differentiated along the osteogenic lineage using lineage-specific inducing medium. Osteogenic medium contained 100 nm dexamethasone, 10 mm β-glycerophosphate, and 0.005 mm ascorbic acid-2-phosphate. Osteogenic cultures were incubated for 4 weeks in 95% air and 5% CO2 at 39�C. Spent medium was replaced with fresh medium every 3 days. Histological staining with alkaline phosphatase, Von Kossa, and alizarin red S were performed at 0, 2, 4, 7, 14, 21, and 28 days of differentiation (dd). At the same time points, RNA was extracted. qPCR was performed on COL1A1, BGLAP, SPARC, and SPP1. As internal control, the geometrical mean of GTF2H, NUBP, and PPP2C was used. Relative mRNA abundance between cell types was calculated using 1/efficiencydCT. The osteogenic differentiation of both MSCs and ADScs was confirmed by the organization of the cells in nodules and by alkaline phosphatase-, Von Kossa-, and alizarin red S-positive staining. The percent relative abundance of the 4 genes in both cell types was COL1A1 (ca. 50) > SPARC (ca. 45) > SPP1 (ca. 5) > BGLAP ( < 0.1). Cell types showed similar mRNA abundance for COL1A1 and SPARC while SPP1 and BGLAP were, respectively, 10- and 19-fold higher in MSCs than in ADSCs. All of the genes had the same pattern among tissues during differentiation except for SPP1, which showed a >10-fold increase at 14 v. 0 dd only for MSCs. Adipose-derived stem cells demonstrated a clear osteogenic differentiation and similar expression and pattern of the two osteogenic genes most abundant in MSCs (COL1A1 and SPARC). However, the higher abundance of SPP1 and BGLAP and the different behavior of SPP1 in MSCs suggest a different transcription profile between the two cell types. From these preliminary results, adipose tissue can be a practical alternative source for stem cells in future human clinical applications.


Author(s):  
Dhanasekaran Marappagounder ◽  
Indumathi Somasundaram ◽  
Sudarsanam Dorairaj ◽  
Rajkumar Sankaran

AbstractAlthough stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.


Cell Cycle ◽  
2012 ◽  
Vol 11 (2) ◽  
pp. 377-383 ◽  
Author(s):  
Renata I. Dmitrieva ◽  
Izida R. Minullina ◽  
Anna A. Bilibina ◽  
Olga V. Tarasova ◽  
Sergey V. Anisimov ◽  
...  

10.3823/2422 ◽  
2017 ◽  
Vol 10 ◽  
Author(s):  
Marisa Gonzaga da Cunha ◽  
Flávia Cury Rezende ◽  
Ana Lucia Gonzaga da Cunha ◽  
Carlos A. Machado ◽  
Fernando Luiz Affonso Fonseca

The development of treatments using stem cells has drawn the attention of researchers to fat deposits given the fact they represent an almost unlimited reservoir of such cells, which can be accessed through minimally invasive techniques. However, the standardization of these studies has been made difficult because of the controversies of nomenclature regarding the many components of adipose tissue. Despite their distinct and independent structures with different metabolic responses, the terms hypodermis and subcutaneous adipose tissue are many times used as synonyms. However, the correct distinction between these two layers, the knowledge of their behavior and an uniformity of these terminologies are of utmost importance.             Thus, the purpose of this study was to make a bibliographic review on the theme, aiming to show the anatomical, histological and metabolic differences between these two tissues and standardize their nomenclature.


Sign in / Sign up

Export Citation Format

Share Document