scholarly journals On strictly weak mixing C *-dynamical systems and a weighted ergodic theorem

2010 ◽  
Vol 47 (2) ◽  
pp. 155-174
Author(s):  
Farrukh Mukhamedov

We prove that unique ergodicity of tensor product of a C *-dynamical system implies its strictly weak mixing. By means of this result a uniform weighted ergodic theorem with respect to S -Besicovitch sequences for strictly weak mixing dynamical systems is proved. Moreover, we provide certain examples of strictly weak mixing dynamical systems.

2015 ◽  
Vol 15 (02) ◽  
pp. 1550010
Author(s):  
Sheng Huang ◽  
Mikael Skoglund

This note proves that an induced transformation with respect to a finite measure set of a recurrent asymptotically mean stationary dynamical system with a sigma-finite measure is asymptotically mean stationary. Consequently, the Shannon–McMillan–Breiman theorem, as well as the Shannon–McMillan theorem, holds for all reduced processes of any finite-state recurrent asymptotically mean stationary random process. As a by-product, a ratio ergodic theorem for asymptotically mean stationary dynamical systems is presented.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 987 ◽  
Author(s):  
Francesco Fidaleo

Consider a uniquely ergodic C * -dynamical system based on a unital *-endomorphism Φ of a C * -algebra. We prove the uniform convergence of Cesaro averages 1 n ∑ k = 0 n − 1 λ − n Φ ( a ) for all values λ in the unit circle, which are not eigenvalues corresponding to “measurable non-continuous” eigenfunctions. This result generalizes an analogous one, known in commutative ergodic theory, which turns out to be a combination of the Wiener–Wintner theorem and the uniformly convergent ergodic theorem of Krylov and Bogolioubov.


2016 ◽  
Vol 17 (01) ◽  
pp. 1750007 ◽  
Author(s):  
Kenneth Uda

We employ an extension of ergodic theory to the random setting to investigate the existence of random periodic solutions of random dynamical systems. Given that a random dynamical system on a cylinder [Formula: see text] has a dissipative structure, we proved that a random invariant compact set can be expressed as a union of finite of number of random periodic curves. The idea in this paper is closely related to the work recently considered by Zhao and Zheng [46].


Author(s):  
FRANCESCO FIDALEO ◽  
FARRUKH MUKHAMEDOV

We show that some C*-dynamical systems obtained by free Fock quantization of classical ones, enjoy ergodic properties much stronger than their boson or fermion analogous. Namely, if the classical dynamical system (X, T, μ) is ergodic but not weakly mixing, then the resulting free quantized system (𝔊, α) is uniquely ergodic (w.r.t. the fixed point algebra) but not uniquely weak mixing. The same happens if we quantize a classical system (X, T, μ) which is weakly mixing but not mixing. In this case, the free quantized system is uniquely weak mixing but not uniquely mixing. Finally, a free quantized system arising from a classical mixing dynamical system, will be uniquely mixing. In such a way, it is possible to exhibit uniquely weak mixing and uniquely mixing C*-dynamical systems whose Gelfand–Naimark–Segal representation associated to the unique invariant state generates a von Neumann factor of one of the following types: I∞, II1, IIIλwhere λ ∈ (0, 1]. The resulting scenario is then quite different from the classical one. In fact, if a classical system is uniquely mixing, it is conjugate to the trivial one consisting of a singleton. For the sake of completeness, the results listed above are extended to the q-Commutation Relations, provided [Formula: see text]. The last result has a self-contained meaning as we prove that the involved C*-dynamical systems based on the q-Commutation Relations are conjugate to the corresponding one arising from the free case (i.e. q = 0), at least if [Formula: see text].


Author(s):  
Francesco Fidaleo

Consider a uniquely ergodic $C^*$-dynamical system ba\-sed on a unital $*$-endomorphism $\Phi$ of a $C^*$-algebra. We prove the uniform convergence of Cesaro averages $\frac1{n}\sum_{k=0}^{n-1}\lambda^{-n}\Phi(a)$ for all values $\lambda$ in the unit circle which are not eigenvalues corresponding to "measurable non continuous" eigenfunctions. This result generalises the analogous one in commutative ergodic theory presented in [19], which turns out to be a combination of the Wiener-Wintner Theorem (cf. [22]) and the uniformly convergent ergodic theorem of Krylov and Bogolioubov (cf. [15]).


2011 ◽  
Vol 85 (1) ◽  
pp. 46-59 ◽  
Author(s):  
FARRUKH MUKHAMEDOV

AbstractWe prove that, under certain conditions, uniform weak mixing (to zero) of the bounded sequences in Banach space implies uniform weak mixing of their tensor product. Moreover, we prove that ergodicity of tensor product of the sequences in Banach space implies their weak mixing. As applications of the results obtained, we prove that the tensor product of uniquely E-weak mixing C*-dynamical systems is also uniquely E-weak mixing.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 379
Author(s):  
Miguel Abadi ◽  
Vitor Amorim ◽  
Sandro Gallo

From a physical/dynamical system perspective, the potential well represents the proportional mass of points that escape the neighbourhood of a given point. In the last 20 years, several works have shown the importance of this quantity to obtain precise approximations for several recurrence time distributions in mixing stochastic processes and dynamical systems. Besides providing a review of the different scaling factors used in the literature in recurrence times, the present work contributes two new results: (1) For ϕ-mixing and ψ-mixing processes, we give a new exponential approximation for hitting and return times using the potential well as the scaling parameter. The error terms are explicit and sharp. (2) We analyse the uniform positivity of the potential well. Our results apply to processes on countable alphabets and do not assume a complete grammar.


1989 ◽  
Vol 03 (15) ◽  
pp. 1185-1188 ◽  
Author(s):  
J. SEIMENIS

We develop a method to find solutions of the equations of motion in Hamiltonian Dynamical Systems. We apply this method to the system [Formula: see text] We study the case a → 0 and we find that in this case the system has an infinite number of period dubling bifurcations.


2021 ◽  
pp. 102986492098831
Author(s):  
Andrea Schiavio ◽  
Pieter-Jan Maes ◽  
Dylan van der Schyff

In this paper we argue that our comprehension of musical participation—the complex network of interactive dynamics involved in collaborative musical experience—can benefit from an analysis inspired by the existing frameworks of dynamical systems theory and coordination dynamics. These approaches can offer novel theoretical tools to help music researchers describe a number of central aspects of joint musical experience in greater detail, such as prediction, adaptivity, social cohesion, reciprocity, and reward. While most musicians involved in collective forms of musicking already have some familiarity with these terms and their associated experiences, we currently lack an analytical vocabulary to approach them in a more targeted way. To fill this gap, we adopt insights from these frameworks to suggest that musical participation may be advantageously characterized as an open, non-equilibrium, dynamical system. In particular, we suggest that research informed by dynamical systems theory might stimulate new interdisciplinary scholarship at the crossroads of musicology, psychology, philosophy, and cognitive (neuro)science, pointing toward new understandings of the core features of musical participation.


Sign in / Sign up

Export Citation Format

Share Document