scholarly journals The differential expression of GLUT4 and glycogen levels on cells of liver and muscle tissues in hyperglycemic and normoglycemic conditions

2017 ◽  
Vol 6 (3) ◽  
pp. 84
Author(s):  
I Nyoman Suarsana ◽  
Iwan Harjono Utama ◽  
I Putu Gde Yudhi Arjentinia ◽  
I Made Kardena ◽  
Anak Agung Ayu Mirah Adi
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Khristina G. Judan Cruz ◽  
Ervee P. Landingin ◽  
Maureen B. Gajeton ◽  
Somar Israel D. Fernando ◽  
Kozo Watanabe

Abstract Background Production, marketability and consumer preference of red tilapia often depends upon the intensity of coloration. Hence, new approaches to develop coloration are now geared to improve market acceptability and profit. This study evaluated the effects of carotenoid-rich diets on the phenotypic coloration, carotenoid level, weight gain and expression of coloration-linked genes in skin, fin and muscle tissues. Carotenoids were extracted from dried Daucus carota peel, Ipomoea aquatica leaves, and Moringa oleifera leaves. Eighty (80) size-14 fish were fed with carotenoid-rich treatments twice a day for 120 days. The phenotypic effect of the carotenoid extracts was measured through a color chart. Skin carotenoid level was measured through UV-vis spectrophotometer. csf1ra, Bcdo2 and StAR expression analysis was done using qRT-PCR. Results Treatments with carotenoid extracts yielded higher overall scores on phenotypic coloration and tissue carotenoid levels. Differential expression of carotenoid-linked genes such as the elevated expression in csf1ra and lower expression in Bcdo2b following supplementation of the enhanced diet supports the phenotypic redness and increased carotenoid values in red tilapia fed with D. carota peel and I. aquatica leaves. Conclusions Overall improvement in the redness of the tilapia was achieved through the supplementation of carotenoid-rich diet derived from readily available plants. Differential expression of coloration-linked genes supports the increase in the intensity of phenotypic coloration and level of carotenoids in the tissues. The study emphasizes the importance of carotenoids in the commercial tilapia industry and highlights the potential of the plant extracts for integration and development of feeds for color enhancement in red tilapia.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 306-306
Author(s):  
Ki Yong Chung ◽  
Eun Mi Lee ◽  
Eung Gi Kwon ◽  
Man Hi Han ◽  
Sara Heras-Saldana ◽  
...  

Abstract Hanwoo, Korean native cattle, have been known for high intramuscular adipose tissue compare to other beef cattle. Bovine satellite cells (BSC) of longissimus dorsi (LD) and semimembranosus (SM) tissues differentiated from myoblast into multinucleated myotubes has different characteristics under cell culture system. Differentially expressed genes (DEG) of the two muscle tissues were compared based on 24, 48, 96, and 168 hours. Difference in the index between LD and SM BSC at each time point were tested with an analysis of variance for a model fitting time (day), tissue and the interaction between time and tissue. P-values < 0.05 were considered significantly different. There were 640 genes difference in 4 Day with the lowest DEG, 442 in Up and 198 in Down. There were 2,755 genes difference in 7 Day and 879 genes in Up and 1876 genes in Down. The differential expression of actin alpha 1 (ACTA1), actin alpha cardiac muscle 1 (ACTC1), matrix metallopeptidase 2 (MMP2), and myosin light chain phosphorylated fast skeletal muscle (MYLPF) genes (P < 0.05) were involved in the differentiation of SM greater than those of LD muscle. However, we found the same pattern in the transcription levels of myogenine (MYOG), myogenic differentiation 1(MYOD), and myogenic regulatory factors 6 (MYF6) for both muscles. There were more difference in the enriched Gene ontology terms cell cycle, proliferation and G2/M transition of mitotic during the end of proliferation compare to myoblast differentiation. Our finding provide evidence that the differential expression in of ACTA1, ACTC1, MMP2, and MYLPF genes could be involved in the differentiation of LD and SM muscles. This data indicated that the origin of the BSC were epigenetically improved during the myogenic development of LD and SM


2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Dong-Joo Cheon ◽  
Ann E. Walts ◽  
Jessica A. Beach ◽  
Jenny Lester ◽  
John S. Bomalaski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document