MXene Electrode Materials for Electrochemical Energy Storage: First-Principles and Grand Canonical Monte Carlo Simulations

MRS Advances ◽  
2019 ◽  
Vol 4 (33-34) ◽  
pp. 1833-1841
Author(s):  
Yasuaki Okada ◽  
Nathan Keilbart ◽  
James M. Goff ◽  
Shin’ichi Higai ◽  
Kosuke Shiratsuyu ◽  
...  

MXenes are a novel class of two dimensional materials, discovered by Barsoum and Gogotsi [M. Naguib, J. Come, B. Dyatkin, V. Presser, P. Taberna, P. Simon, M. W. Barsoum, and Y. Gogotsi, Electrochemistry Communications 16, 61-64 (2012); B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, Nature Reviews Materials vol. 2, 16098 (2017)]. Their large specific surface area and the tunability of their physicochemical properties as a function of the transition metal and surface terminal group make them a unique design platform for various applications, a primary example of which is pseudocapacitive energy storage. However, there is still incomplete understanding of how the transition metal chemistry and stoichiometry, and the surface termination affect charge storage mechanisms in MXene. In this study, we have performed systematic first-principles calculations for bulk MXene and found that the atomic charge of the metal cations, which is related to their valence, decreases across the d-electron metal series. Electronic-structure indicators of performance are examined to understand the energy storage behavior, whereby charges are stored between the terminal groups and adsorbing cations. Importantly, we found that the differential Bader charges show good agreement with theoretical capacitances and are useful in predicting charge storage trends in MXene-based pseudocapacitors. Furthermore, we have performed first-principles and grand canonical Monte Carlo calculations for the slab systems, finding that the solvent plays a critical role in enhancing the pseudocapacitive response.

2020 ◽  
Vol 6 (2) ◽  
pp. 20
Author(s):  
Maxim N. Popov ◽  
Thomas Dengg ◽  
Dominik Gehringer ◽  
David Holec

In this paper, we report the results of hydrogen adsorption properties of a new 2D carbon-based material, consisting of pentagons and octagons (Penta-Octa-Penta-graphene or POP-graphene), based on the Grand-Canonical Monte Carlo simulations. The new material exhibits a moderately higher gravimetric uptake at cryogenic temperatures (77 K), as compared to the regular graphene. We discuss the origin of the enhanced uptake of POP-graphene and offer a consistent explanation.


Sign in / Sign up

Export Citation Format

Share Document