A study of the thermodynamics of the crystalline-to-amorphous transformation in Zr-based hydrides by means of thermal analysis

1987 ◽  
Vol 2 (2) ◽  
pp. 173-177 ◽  
Author(s):  
X. L. Yeh ◽  
E. J. Cotts

Amorphous Zr–Rh and Zr–Pd hydrides are prepared both by hydriding metallic glasses and by hydriding metastable, polycrystalline fcc alloys. The thermal stabilities of the amorphous hydrides produced by these two distinct methods are examined by means of differential scanning calorimetry and are found to be similar. The enthalpy difference between the fcc phase and the amorphous phase of Zr81Rh19 is determined to be 0.6 kcal/mol. The thermal stability of Zr–Rh hydrides as a function of hydrogen concentration is investigated.

2018 ◽  
Vol 39 (4) ◽  
pp. 21
Author(s):  
Gilbert Bannach ◽  
Rafael R. Almeida ◽  
Luis G. Lacerda ◽  
Egon Schnitzler ◽  
Massao Ionashiro

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.


2021 ◽  
Author(s):  
Deshraj Singh ◽  
Pawan Kumar ◽  
Jitendra Singh ◽  
Dharm Veer ◽  
Ram S Katiyar ◽  
...  

Abstract Composite Electrolytes (1-x)CsH2PO4/xTiO2(0 ≤ x ≤ 0.4) were prepared and analyzed the structural, thermal, and transport properties. We have investigated the ionic conductivity of the composites electrolyte highly pressurized pellets and found that the conductivity of pure CsH2PO4 (CDP) increased three orders of magnitude at the transition temperature. The conductivity value of the composites is greater than pure CDP after 250°C. Arrhenius plots have confirmed the conductive nature of ionic conduction. The dehydration behavior and thermal stability of the materials were observed in terms of differential scanning calorimetry, thermogravimetric analysis and differential thermal analysis, and found that the minimum weight loss for the composite 0.6CDP/0.4TiO2. The electrodes were prepared with the technique of vapor deposition.


2018 ◽  
Vol 189 (3) ◽  
pp. 206-217
Author(s):  
Dariusz Poplawski ◽  
Maciej Kaniewski ◽  
Jozef Hoffmann ◽  
Krystyna Hoffmann

The paper presents the results of studies carried out using differential thermal analysis (DTA) and differential scanning calorimetry (DSC), conjugated with thermogravimetry (TG). Measurements were made for samples with differentiated compositions, mainly consisting of ammonium nitrate with fertilizer purity and compounds that may be present in nitrogen fertilizers as potential additives or contaminants. The possibilities of applied techniques and recommendations concerning proper selection of measurement conditions are described. Furthermore, the method of interpretation of the obtained results is presented, which allows evaluating the thermal stability of the tested mixtures for the safety and quality of nitrogen fertilizers.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


2018 ◽  
Vol 6 (41) ◽  
pp. 20383-20392 ◽  
Author(s):  
Yongho Lee ◽  
Hyojun Lim ◽  
Sang-Ok Kim ◽  
Hyung-Seok Kim ◽  
Ki Jae Kim ◽  
...  

The thermal behavior of fully lithiated and sodiated Sn electrodes cycled in a MePF6 (Me = Li or Na)-based electrolyte was studied using differential scanning calorimetry (DSC).


Sign in / Sign up

Export Citation Format

Share Document