Shielding of cracks in a plastically polarizable material

1991 ◽  
Vol 6 (8) ◽  
pp. 1763-1772 ◽  
Author(s):  
S.J. Zhou ◽  
Robb Thomson

In this paper, we address some fundamental questions regarding the response of a crack to externally generated dislocations. We note that since dislocations that formed at external sources in the material must be in the form of loops or dipoles, the theory must be couched in terms of crack shielding in a plastically polarizable medium. There are strong analogies to dielectric theory. We prove two general theorems: (1) Dipoles formed in the emission geometry relative to a crack tip always antishield the crack and (2) when dipoles are induced during uniform motion of a crack through a uniformly plastically polarizable material, then the net shielding is always positive. We illustrate these general theorems with a number of special cases for fixed and polarizable sources. Finally, we simulate the self consistent time dependent response of a crack to a polarizable source as the crack moves past it. The results show that the crack is initially antishielded, but that positive shielding always dominates during later stages of configuration evolution. The crack may be arrested by the source, or it may break away from it, depending upon the various parameters (source strength and geometry, dislocation mobility, Griffith condition for the crack, etc.). The results indicate that the time dependence of crack shielding in the presence of a nonuniform density of sources will be very important in practical cases of brittle transitions in materials.

1996 ◽  
Vol 154 ◽  
pp. 149-153
Author(s):  
S. T. Wu ◽  
A. H. Wang ◽  
W. P. Guo

AbstractWe discuss the self-consistent time-dependent numerical boundary conditions on the basis of theory of characteristics for magnetohydrodynamics (MHD) simulations of solar plasma flows. The importance of using self-consistent boundary conditions is demonstrated by using an example of modeling coronal dynamic structures. This example demonstrates that the self-consistent boundary conditions assure the correctness of the numerical solutions. Otherwise, erroneous numerical solutions will appear.


1993 ◽  
Vol 137 ◽  
pp. 572-574 ◽  
Author(s):  
E.A. Dorfi ◽  
M.U. Feuchtinger ◽  
S. Höfner

The cool extended atmospheres of late type giants are sites where dust formation takes place. Radiation pressure on the dust grains is an important force for driving the slow but massive winds observed in such objects. Existing calculations of dust driven stellar winds (e.g. Bowen 1988, Fleischer et al. 1991) suffer from the fact that they include approximations at various levels for different parts of the problem like the hydrodynamics or the dust formation. Furthermore they do not include time-dependent radiative transfer.In order to overcome these insufficiencies we plan to calculate self-consistent models of dust driven winds with a full description of both the radiation hydrodynamics and the time-dependent dust formation. As a first step, however, we concentrate our investigations on the self-consistent description of the radiation hydrodynamics adopting only a simple description of the dust opacities.


1994 ◽  
Vol 116 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Muneo Hori ◽  
Sia Nemat-Nasser

The double-inclusion model consists of an ellipsoidal inclusion of arbitrary elasticity, containing another ellipsoidal heterogeneity of arbitrary elasticity, size, and orientation, which are embedded in an infinitely extended homogeneous domain of yet another arbitrary elasticity. Average field quantities for the double inclusion are obtained analytically, and used to estimate the overall moduli of two-phase composites. The technique includes the self-consistent and other related methods as special cases. Furthermore, exact bounds for the overall moduli are obtained on the basis of the double-inclusion model. The double-inclusion model has been generalized (Nemat-Nasser and Hori, 1993) to a multi-inclusion model, where, again, all the average field quantities are estimated analytically. The application of the multiinclusion model includes a composite containing inclusions with multi-layer coatings.


Fractals ◽  
1993 ◽  
Vol 01 (03) ◽  
pp. 460-469 ◽  
Author(s):  
Z. HÓRVÖLGYI ◽  
M. ZRINYI

Interfacial aggregation of surface modified glass beads (62–74 μm diameter) at water/air interface was carried out by using two differently hydrophobic samples, respectively. The effect of aggregation time on the self-similar structure of forming aggregates was studied comparing the actual results to those obtained previously.1 The time dependence of restructuring from the point of view of fractal geometry has been proved but the results call attention to another time dependent process— orientation of growing clusters during their collisions due to anisotropy of cluster-cluster interactions.


Sign in / Sign up

Export Citation Format

Share Document