Characterization of chemical bonding and physical characteristics of diamond-like amorphous carbon and diamond films

1992 ◽  
Vol 7 (2) ◽  
pp. 404-410 ◽  
Author(s):  
Bharat Bhushan ◽  
Andrew J. Kellock ◽  
Nam-Hee Cho ◽  
Joel W. Ager

Diamond-like (amorphous) carbon (DLC) films were prepared by dc magnetron sputtering and plasma enhanced chemical vapor deposition (PECVD) and diamond films were prepared by microwave plasma enhanced chemical vapor deposition (MPECVD). For the first time, chemical and mechanical characterization of the films from each category are carried out systematically and a comparison of the chemical and physical properties is provided. We find that DLC coatings produced by PECVD are superior in microhardness and modulus of elasticity to those produced by sputtering. PECVD films contain a larger fraction of sp3-bonding than the sputtered hydrogenated carbon films. Chemical and physical properties of the diamond films appear to be close to those of bulk diamond.

2005 ◽  
Vol 482 ◽  
pp. 203-206 ◽  
Author(s):  
O. Jašek ◽  
M. Eliáš ◽  
Z. Frgala ◽  
Jiřina Matějková ◽  
Antonín Rek ◽  
...  

Carbon based films on silicon substrates have been studied by high resolution FE SEM equipped by an EDS analyzer. The first type are carbon nanotube (CNT) [1] films prepared on Si/SiO2 substrates with Ni or Fe layers by radiofrequency plasma chemical vapor deposition. Dependence of nanotube films properties on Ni and Fe thickness and deposition conditions have been studied. The second type of films discussed are microcrystalline and nanocrystalline diamond films grown on pre-treated Si substrates by microwave plasma chemical vapor deposition (MPCVD). The pre-treatment was varied and its effect on diamond films was studied.


Sign in / Sign up

Export Citation Format

Share Document