Transmission electron microscopy observation of the interfacial reaction between a metal-organic chemical vapor deposition BaTiO3 thin film and a (100) MgO substrate

1995 ◽  
Vol 10 (11) ◽  
pp. 2885-2891 ◽  
Author(s):  
Cheol Seong Hwang ◽  
Mark D. Vaudin ◽  
Gregory T. Stauf

Cross-sectional and plan-view transmission electron microscopy were used to characterize a BaTiO3 thin film deposited on a (100) MgO single-crystal substrate at 1000 °C. The major observations were as follows: interdiffusion between the film and substrate; a large number of antiphase boundaries in the BaTiO3; a two-phase microstructure in the film composed of perovskite BaTiO3 and a second nonperovskite phase, Ba2MgTi5O13 (2:1:5); and a well-defined orientation relationship between the 2 : 1 : 5 and BaTiO3 phases. We propose a mechanism for the formation of the 2 : 1 : 5 phase based on the similarities between the crystal structure of this phase and the structure of (210) antiphase boundaries in BaTiO3.

1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


2002 ◽  
Vol 745 ◽  
Author(s):  
Patrick S. Lysaght ◽  
Brendan Foran ◽  
Gennadi Bersuker ◽  
Larry Larson ◽  
Robert W. Murto ◽  
...  

ABSTRACTEvaluation of physically thicker gate insulator materials with significantly higher dielectric constants (k = 10 – 25) as potential replacements for silicon dioxide, SiO2 (k = 3.9), and silicon oxynitride continues to be a focus of the semiconductor industry. The challenge is to provide a film with lower leakage current and with capacitance equivalent to < 1.0 nm SiO2 [1–4]. One such candidate material; metal-organic chemical vapor deposited (MOCVD) hafnium silicate, has been physically characterized by high resolution transmission electron microscopy (HRTEM) in plan view, as a blanket, uncapped film and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) in cross section following integration into capacitors and complementary metal oxide semiconductor (CMOS) transistors. Changes in the material microstructure associated with phase segregation and crystallization as a function of Hf silicate composition and rapid thermal anneal (RTA) temperature have been observed and a discussion of the segregation mechanisms is presented [5–8]. Also, various methods of incorporating nitrogen into bulk hafnium silicate films have been investigated and resultant transistor electrical performance data has been correlated with physical characterization for NH3 post deposition anneal (PDA) treatments at various temperatures.


2012 ◽  
Vol 18 (6) ◽  
pp. 1410-1418 ◽  
Author(s):  
Daniel K. Schreiber ◽  
Praneet Adusumilli ◽  
Eric R. Hemesath ◽  
David N. Seidman ◽  
Amanda K. Petford-Long ◽  
...  

AbstractA sample preparation method is described for enabling direct correlation of site-specific plan-view and cross-sectional transmission electron microscopy (TEM) analysis of individual nanostructures by employing a dual-beam focused-ion beam (FIB) microscope. This technique is demonstrated using Si nanowires dispersed on a TEM sample support (lacey carbon or Si-nitride). Individual nanowires are first imaged in the plan-view orientation to identify a region of interest; in this case, impurity atoms distributed at crystalline defects that require further investigation in the cross-sectional orientation. Subsequently, the region of interest is capped with a series of ex situ and in situ deposited layers to protect the nanowire and facilitate site-specific lift-out and cross-sectioning using a dual-beam FIB microscope. The lift-out specimen is thinned to electron transparency with site-specific positioning to within ∼200 nm of a target position along the length of the nanowire. Using the described technique, it is possible to produce correlated plan-view and cross-sectional view lattice-resolved TEM images that enable a quasi-3D analysis of crystalline defect structures in a specific nanowire. While the current study is focused on nanowires, the procedure described herein is general for any electron-transparent sample and is broadly applicable for many nanostructures, such as nanowires, nanoparticles, patterned thin films, and devices.


2005 ◽  
Vol 20 (7) ◽  
pp. 1878-1887 ◽  
Author(s):  
Takanori Kiguchi ◽  
Naoki Wakiya ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

The crystallization process of yttria-stabilized zirconia (YSZ) gate dielectrics deposited on p-Si (001) and SiOx/p-Si(001) substrates and the growth process of SiOx has been investigated directly using high-temperature in situ cross-sectional view transmission electron microscopy (TEM) method and high-temperature plan-view in-situ TEM method. The YSZ layer is crystallized by the nucleation and growth mechanism at temperatures greater than 573 K. Nucleation originates from the film surface. Nucleation occurs randomly in the YSZ layer. Subsequently, the crystallized YSZ area strains the Si surface. Finally, it grows in the in-plane direction with the strain, whereas, if a SiOx layer of 1.4 nm exists, it absorbs the crystallization strain. Thereby, an ultrathin SiOx layer can relax the strain generated in the Si substrate in thin film crystallization process.


2002 ◽  
Vol 747 ◽  
Author(s):  
Patrick S. Lysaght ◽  
Brendan Foran ◽  
Gennadi Bersuker ◽  
Larry Larson ◽  
Robert W. Murto ◽  
...  

ABSTRACTEvaluation of physically thicker gate insulator materials with significantly higher dielectric constants (k = 10 – 25) as potential replacements for silicon dioxide, SiO2 (k = 3.9), and silicon oxynitride continues to be a focus of the semiconductor industry. The challenge is to provide a film with lower leakage current and with capacitance equivalent to < 1.0 nm SiO2 [1–4]. One such candidate material; metal-organic chemical vapor deposited (MOCVD) hafnium silicate, has been physically characterized by high resolution transmission electron microscopy (HRTEM) in plan view, as a blanket, uncapped film and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) in cross section following integration into capacitors and complementary metal oxide semiconductor (CMOS) transistors. Changes in the material microstructure associated with phase segregation and crystallization as a function of Hf silicate composition and rapid thermal anneal (RTA) temperature have been observed and a discussion of the segregation mechanisms is presented [5–8]. Also, various methods of incorporating nitrogen into bulk hafnium silicate films have been investigated and resultant transistor electrical performance data has been correlated with physical characterization for NH3 post deposition anneal (PDA) treatments at various temperatures.


Author(s):  
V.P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman ◽  
A. Revcolevschi

Transmission electron microscopy (TEM), incorporating imaging, diffraction and spectrometry has contributed significantly to the understanding of the structure of crystalline interfaces. Traditionally, planar interfaces are investigated using cross-sectional views (electron beam parallel to the interface) of the specimen. However, plan-view TEM (PVTEM) has recently emerged as a viable and supplementary technique to cross-sectional TEM (XTEM). PVTEM enjoys certain definite advantages over XTEM. One important consideration is that the interface in a PV specimen is buried (sandwiched between two crystals) and is expected to be free of artefacts induced by specimen preparation procedures. Moreover, many multilayer electronic materials are amenable to PVTEM because they can be easily backthinned to electron transparency with virtually no damage to the internal interfaces. PV specimens clearly contain much larger interface area than XTEM specimens, which may be of great significance when statistics are considered. Apart from these considerations PVTEM studies can also offer specific information about the interface not always possible in XTEM. In this brief communication we report some of our results on imaging, diffraction and spectrometry of interfaces obtained by viewing the interfaces in the PV mode.


Sign in / Sign up

Export Citation Format

Share Document