Physical and Electrical Characterization of Hafnium Silicate Thin Films

2002 ◽  
Vol 747 ◽  
Author(s):  
Patrick S. Lysaght ◽  
Brendan Foran ◽  
Gennadi Bersuker ◽  
Larry Larson ◽  
Robert W. Murto ◽  
...  

ABSTRACTEvaluation of physically thicker gate insulator materials with significantly higher dielectric constants (k = 10 – 25) as potential replacements for silicon dioxide, SiO2 (k = 3.9), and silicon oxynitride continues to be a focus of the semiconductor industry. The challenge is to provide a film with lower leakage current and with capacitance equivalent to < 1.0 nm SiO2 [1–4]. One such candidate material; metal-organic chemical vapor deposited (MOCVD) hafnium silicate, has been physically characterized by high resolution transmission electron microscopy (HRTEM) in plan view, as a blanket, uncapped film and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) in cross section following integration into capacitors and complementary metal oxide semiconductor (CMOS) transistors. Changes in the material microstructure associated with phase segregation and crystallization as a function of Hf silicate composition and rapid thermal anneal (RTA) temperature have been observed and a discussion of the segregation mechanisms is presented [5–8]. Also, various methods of incorporating nitrogen into bulk hafnium silicate films have been investigated and resultant transistor electrical performance data has been correlated with physical characterization for NH3 post deposition anneal (PDA) treatments at various temperatures.

2002 ◽  
Vol 745 ◽  
Author(s):  
Patrick S. Lysaght ◽  
Brendan Foran ◽  
Gennadi Bersuker ◽  
Larry Larson ◽  
Robert W. Murto ◽  
...  

ABSTRACTEvaluation of physically thicker gate insulator materials with significantly higher dielectric constants (k = 10 – 25) as potential replacements for silicon dioxide, SiO2 (k = 3.9), and silicon oxynitride continues to be a focus of the semiconductor industry. The challenge is to provide a film with lower leakage current and with capacitance equivalent to < 1.0 nm SiO2 [1–4]. One such candidate material; metal-organic chemical vapor deposited (MOCVD) hafnium silicate, has been physically characterized by high resolution transmission electron microscopy (HRTEM) in plan view, as a blanket, uncapped film and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) in cross section following integration into capacitors and complementary metal oxide semiconductor (CMOS) transistors. Changes in the material microstructure associated with phase segregation and crystallization as a function of Hf silicate composition and rapid thermal anneal (RTA) temperature have been observed and a discussion of the segregation mechanisms is presented [5–8]. Also, various methods of incorporating nitrogen into bulk hafnium silicate films have been investigated and resultant transistor electrical performance data has been correlated with physical characterization for NH3 post deposition anneal (PDA) treatments at various temperatures.


2004 ◽  
Vol 831 ◽  
Author(s):  
Yoga. N. Saripalli ◽  
X-Q Liu ◽  
D.W. Barlage ◽  
M.A.L. Johnson ◽  
D. Braddock ◽  
...  

ABSTRACTAn effective gate insulator for compound semiconductors has been a challenging goal for the materials research community for nearly 40 years. Recent developments on the epitaxial deposition of complex gate oxides as gate insulators have shown promise with the demonstration of enhancement mode high electron mobility transistors (e-mode HEMTs). In this work, gate oxide epilayers deposited on III-V semiconductors for field effect transistors (III-V MOSFETs) are examined using transmission electron microscopy (TEM) to identify the structure of the oxide/semiconductor interface. The high resolution images of the cross-sectional structures for the first time reveal a crystalline nature of the interface between the oxide and the III-V semiconductor. The composition of the oxide layers are determined by Z-contrast Electron Energy Loss Spectroscopy (EELS). The surface morphology of the FET structures is investigated by atomic force microscopy (AFM) both before and after gate oxide deposition, and the structural results are related to device DC electrical characteristics. With an underlying GaN/InGaN heterojunction grown by metal-organic chemical vapor deposition (MOCVD) on sapphire, the MOSFET devices exhibit the characteristics of a substantially unpinned interface, including the capacity for significant charge accumulation and transconductance at positive gate voltages.


1995 ◽  
Vol 10 (11) ◽  
pp. 2885-2891 ◽  
Author(s):  
Cheol Seong Hwang ◽  
Mark D. Vaudin ◽  
Gregory T. Stauf

Cross-sectional and plan-view transmission electron microscopy were used to characterize a BaTiO3 thin film deposited on a (100) MgO single-crystal substrate at 1000 °C. The major observations were as follows: interdiffusion between the film and substrate; a large number of antiphase boundaries in the BaTiO3; a two-phase microstructure in the film composed of perovskite BaTiO3 and a second nonperovskite phase, Ba2MgTi5O13 (2:1:5); and a well-defined orientation relationship between the 2 : 1 : 5 and BaTiO3 phases. We propose a mechanism for the formation of the 2 : 1 : 5 phase based on the similarities between the crystal structure of this phase and the structure of (210) antiphase boundaries in BaTiO3.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


1992 ◽  
Vol 281 ◽  
Author(s):  
S. Shih ◽  
K. H. Jung ◽  
D. L. Kwong

ABSTRACTWe have developed a new, minimal damage approach for examination of luminescent porous Si layers (PSLs) by transmission electron microscopy (TEM). In this approach, chemically etched PSLs are fabricated after conventional plan-view TEM sample preparation. A diffraction pattern consisting of a diffuse center spot, characteristic of amorphous material, is primarily observed. However, crystalline, microcrystalline, and amorphous regions could all be observed in selected areas. A crystalline mesh structure could be observed in some of the thin areas near the pinhole. The microcrystallite sizes were 15–150 Å and decreased in size when located further from the pinhole.


1998 ◽  
Vol 523 ◽  
Author(s):  
John Mardinly ◽  
David W. Susnitzky

AbstractThe demand for increasingly higher performance semiconductor products has stimulated the semiconductor industry to respond by producing devices with increasingly complex circuitry, more transistors in less space, more layers of metal, dielectric and interconnects, more interfaces, and a manufacturing process with nearly 1,000 steps. As all device features are shrunk in the quest for higher performance, the role of Transmission Electron Microscopy as a characterization tool takes on a continually increasing importance over older, lower-resolution characterization tools, such as SEM. The Ångstrom scale imaging resolution and nanometer scale chemical analysis and diffraction resolution provided by modem TEM's are particularly well suited for solving materials problems encountered during research, development, production engineering, reliability testing, and failure analysis. A critical enabling technology for the application of TEM to semiconductor based products as the feature size shrinks below a quarter micron is advances in specimen preparation. The traditional 1,000Å thick specimen will be unsatisfactory in a growing number of applications. It can be shown using a simple geometrical model, that the thickness of TEM specimens must shrink as the square root of the feature size reduction. Moreover, the center-targeting of these specimens must improve so that the centertargeting error shrinks linearly with the feature size reduction. To meet these challenges, control of the specimen preparation process will require a new generation of polishing and ion milling tools that make use of high resolution imaging to control the ion milling process. In addition, as the TEM specimen thickness shrinks, the thickness of surface amorphization produced must also be reduced. Gallium focused ion beam systems can produce hundreds of Ångstroms of amorphised surface silicon, an amount which can consume an entire thin specimen. This limitation to FIB milling requires a method of removal of amorphised material that leaves no artifact in the remaining material.


1993 ◽  
Vol 311 ◽  
Author(s):  
Lin Zhang ◽  
Douglas G. Ivey

ABSTRACTSilicide formation through deposition of Ni onto hot Si substrates has been investigated. Ni was deposited onto <100> oriented Si wafers, which were heated up to 300°C, by e-beam evaporation under a vacuum of <2x10-6 Torr. The deposition rates were varied from 0.1 nm/s to 6 nm/s. The samples were then examined by both cross sectional and plan view transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy and electron diffraction. The experimental results are discussed in terms of a new kinetic model.


1997 ◽  
Vol 493 ◽  
Author(s):  
C. H. Lin ◽  
B. M. Yen ◽  
Haydn Chen ◽  
T. B. Wu ◽  
H. C. Kuo ◽  
...  

ABSTRACTHighly textured PbZrxTi1−xO3 (PZT) thin films with x= 0-0.6 were grown on LaNiO3 coated Si substrates at 600 °C by metal-organic chemical vapor deposition (MOCVD). The preferred crystalline orientation of PZT thin films with various Zr concentration were characterized by X-ray diffraction (XRD). Microstructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The dielectric constants, hysteresis and fatigue behavior of these thin films were also measured. The relationship between growth rate and the preferential orientation is discussed. Furthermore, the dependence of the electrical properties on Zr concentration and preferential orientation is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document