Characterization of the Induced Plastic Zone in a Single Crystal TiN(001) Film by Nanoindentation and Transmission Electron Microscopy

1997 ◽  
Vol 12 (8) ◽  
pp. 2134-2142 ◽  
Author(s):  
Magnus Odén ◽  
Henrik Ljungcrantz ◽  
Lars Hultman

The slip system of TiN at room temperature has been determined to be {110} 〈110〉 by Burgers vector analysis using transmission electron microscopy and slip trace analysis of indents made on a TiN(001) film deposited on a MgO(001) substrate. Both small indents (0.4 mN maximum load) and large indents (40 mN maximum load) were used to study the dislocation structure in TiN. The nucleation of dislocations was investigated using small indents. Further development of the plastic zone was studied using large indents and microhardness indents (1.6 N). The critical resolved shear stress evaluated at the load when pop-in occurs was estimated to be 3.7 GPa, assuming a Hertzian elastic contact. Indents made with a 0.4 mN maximum load show a complex dislocation pattern with loops and straight segments that belong to the same slip system. Dislocations of mixed screw and edge type are dominant. The cascade of dislocations generated during pop-in is likely to nucleate from loops. For larger indents, the plastic zone extends more than three times the diameter of the imprint. The straight dislocations outside the large imprint are arranged in arrays along the 〈100〉 and 〈110〉 directions. A scanning force microscopy study of the surface outside a microhardness indent revealed a raised surface along 〈110〉 and formation of troughs along 〈100〉.

Scanning ◽  
2006 ◽  
Vol 19 (8) ◽  
pp. 523-532 ◽  
Author(s):  
J. Gilloteaux ◽  
J. M. Jamison ◽  
F. Zenhausern ◽  
M. Adrian ◽  
J. L. Summers

Author(s):  
J.G. Wen ◽  
K.K. Fung

Bi-based superconducting phases have been found to be members of a structural series represented by Bi2Sr2Can−1Cun−1On+4, n=1,2,3, and are referred to as 2201, 2212, 2223 phases. All these phases are incommensurate modulated structures. The super space groups are P2/b, NBbmb 2201, 2212 phases respectively. Pb-doped ceramic samples and single crystals and Y-doped single crystals have been studied by transmission electron microscopy.Modulated structures of all Bi-based superconducting phases are in b-c plane, therefore, it is the best way to determine modulated structure and c parameter in diffraction pattern. FIG. 1,2,3 show diffraction patterns of three kinds of modulations in Pb-doped ceramic samples. Energy dispersive X-ray analysis (EDAX) confirms the presence of Pb in the three modulated structures. Parameters c are 3 0.06, 38.29, 30.24Å, ie 2212, 2223, 2212 phases for FIG. 1,2,3 respectively. Their average space groups are all Bbmb.


Sign in / Sign up

Export Citation Format

Share Document