Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading

2017 ◽  
Vol 32 (8) ◽  
pp. 1474-1483 ◽  
Author(s):  
Xin-Tong Shu ◽  
Shi-fang Xiao ◽  
Hui-qiu Deng ◽  
Lei Ma ◽  
Wangyu Hu

Abstract

2015 ◽  
Vol 30 (22) ◽  
pp. 3553-3563 ◽  
Author(s):  
Xue Feng Liu ◽  
Jin Bao Wang ◽  
Li Gang Sun ◽  
Ying Yan Zhang ◽  
Mei Ling Tian ◽  
...  

Abstract


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Ding ◽  
Lu-sheng Wang ◽  
Kun Song ◽  
Bo Liu ◽  
Xia Huang

The crack propagation process in single-crystal aluminum plate (SCAP) with central cracks under tensile load was simulated by molecular dynamics method. Further, the effects of model size, crack length, temperature, and strain rate on strength of SCAP and crack growth were comprehensively investigated. The results showed that, with the increase of the model size, crack length, and strain rate, the plastic yield point of SCAP occurred in advance, the limit stress of plastic yield decreased, and the plastic deformability of material increased, but the temperature had less effect and sensitivity on the strength and crack propagation of SCAP. The model size affected the plastic deformation and crack growth of the material. Specifically, at small scale, the plastic deformation and crack propagation in SCAP are mainly affected through dislocation multiplication and slip. However, the plastic deformation and crack propagation are obviously affected by dislocation multiplication and twinning in larger scale.


1990 ◽  
Vol 8 (2) ◽  
pp. 98-104 ◽  
Author(s):  
K. Bethge ◽  
D. Munz ◽  
J. Neumann

Sign in / Sign up

Export Citation Format

Share Document