Rubber Stamping for Plastic Electronics and Fiber Optics

MRS Bulletin ◽  
2001 ◽  
Vol 26 (7) ◽  
pp. 530-534 ◽  
Author(s):  
John A. Rogers

Microcontact printing (μCP) is a low-cost technique for rubber stamping that combines the high spatial resolution of sophisticated forms of photolithography with capabilities (e.g., single-step patterning of large areas and nonplanar surfaces) that are not present in other approaches. μCP will be useful for applications where established methods are ineffective. Two areas are particularly promising: (1) plastic electronics, where the chemical incompatibility of the constituent materials with common photoresists and developers can preclude the use of photolithography, and where μCP with rotating cylindrical stamps forms an excellent match with the type of reel-to-reel processing that is envisioned for these systems; and (2) new classes of optical-fiber and microcapillarybased devices, where μCP allows highresolution (∼0.2 μm) circuits, photomasks, and actuators to be printed directly on the highly curved surfaces of cylinders with submillimeter diameters. This article describes some highlights of our work in these and related areas.

Coral Reefs ◽  
2021 ◽  
Author(s):  
E. Casoli ◽  
D. Ventura ◽  
G. Mancini ◽  
D. S. Pace ◽  
A. Belluscio ◽  
...  

AbstractCoralligenous reefs are characterized by large bathymetric and spatial distribution, as well as heterogeneity; in shallow environments, they develop mainly on vertical and sub-vertical rocky walls. Mainly diver-based techniques are carried out to gain detailed information on such habitats. Here, we propose a non-destructive and multi-purpose photo mosaicking method to study and monitor coralligenous reefs developing on vertical walls. High-pixel resolution images using three different commercial cameras were acquired on a 10 m2 reef, to compare the effectiveness of photomosaic method to the traditional photoquadrats technique in quantifying the coralligenous assemblage. Results showed very high spatial resolution and accuracy among the photomosaic acquired with different cameras and no significant differences with photoquadrats in assessing the assemblage composition. Despite the large difference in costs of each recording apparatus, little differences emerged from the assemblage characterization: through the analysis of the three photomosaics twelve taxa/morphological categories covered 97–99% of the sampled surface. Photo mosaicking represents a low-cost method that minimizes the time spent underwater by divers and capable of providing new opportunities for further studies on shallow coralligenous reefs.


2021 ◽  
Vol 21 (3) ◽  
pp. 2942-2950
Author(s):  
A. Nunez Cascajero ◽  
A. Tapetado ◽  
C. Vazquez

1999 ◽  
Author(s):  
Princy L. Julian ◽  
Mahmoud Farhadiroushan ◽  
Vincent A. Handerek ◽  
Alan J. Rogers

2013 ◽  
Vol 552 ◽  
pp. 393-397
Author(s):  
Zhong Xie Jin ◽  
Hai Peng Zhu

Spatial resolution is an important parameter in distributed optical fiber Raman temperature sensor system (DOFRTS). In this paper, a 10 kilometers long DOFRTS with spatial resolution of about 6 meters is constructed. The spatial resolution is limited by electrical bandwidth of the photodetector circuit and the data acquisition part. The abrupt temperature changes along the fiber axis are treated as temporal pulse signals, and a linear amplitude coefficient modification algorithm is used to improve the spatial resolution. The experimental results show that the temperature amplitudes from 3 meters region to 6 meters can be modified accurately. Therefore, a DOFRTS of high spatial resolution but low system cost could be successfully constructed.


Sign in / Sign up

Export Citation Format

Share Document