amplitude coefficient
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Martin Beneke ◽  
Philipp Böer ◽  
Gael Finauri ◽  
K. Keri Vos

Abstract The QCD×QED factorization is studied for two-body non-leptonic and semi-leptonic B decays with heavy-light final states. These non-leptonic decays, like $$ {\overline{B}}_{(s)}^0\to {D}_{(s)}^{+}{\pi}^{-} $$ B ¯ s 0 → D s + π − and $$ {\overline{B}}_d^0\to {D}^{+}{K}^{-} $$ B ¯ d 0 → D + K − , are among the theoretically cleanest non-leptonic decays as penguin loops do not contribute and colour-suppressed tree amplitudes are suppressed in the heavy-quark limit or even completely absent. Advancing the theoretical calculations of such decays requires therefore also a careful analysis of QED effects. Including QED effects does not alter the general structure of factorization which is analogous for both semi-leptonic and non-leptonic decays. For the latter, we express our result as a correction of the tree amplitude coefficient a1. At the amplitude level, we find QED effects at the sub-percent level, which is of the same order as the QCD uncertainty. We discuss the phenomenological implications of adding QED effects in light of discrepancies observed between theory and experimental data, for ratios of non-leptonic over semi-leptonic decay rates. At the level of the rate, ultrasoft photon effects can produce a correction up to a few percent, requiring a careful treatment of such effects in the experimental analyses.


2021 ◽  
Vol 11 (9) ◽  
pp. 3955
Author(s):  
Zhaoguo Qiu ◽  
You Ji ◽  
Fengpeng Zhang ◽  
Guangliang Yan

Based on the “axial-output method”, the time histories of radial and axial expansive pressures during the hydration process of static cracking agent (SCA) in a cylinder with various diameters were obtained by experiments. With the load input taken as the product of the normalized axial expansive pressure and the amplitude coefficient, a finite element model was established to simulate the experimental chemical expansion process of SCA. The relationships between elastic modulus, radial and axial expansive pressures were then obtained. The results indicate that the elastic modulus increases with increasing radial and axial expansive pressures, and then tends to be constant. The effect of Poisson’s ratio was discussed with the elastic modulus unchanged. It is shown that the Poisson’s ratio is inversely proportional to the amplitude coefficient, and has no effect on the ratio between the axial and radial expansive pressures. Finally, a mechanical model for the variation of elastic modulus with stress during the hydration process of static cracking agent was established in terms of the major principal stress. The model was verified by the experimental results, which can be extended for numerical simulation of SCA expansion under other compressive loading conditions, and then provide practical mechanical parameters for engineering application of SCA.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1362
Author(s):  
Yasser Albagory

In this paper, a new conformal array structure and beamforming technique are proposed to provide efficient communication performance for unmanned aerial vehicles (UAVs) and space vehicles. The proposed array is formed by conformally stacking cylindrical, conical, and concentric circular (CSC4) arrays which are all coaxially aligned with the same axis of the conformed body and with uniform interelement spacing. The array elements are then fed by a weighting vector that has an adaptive cosine tapered profile where the maximum amplitude coefficient is oriented with the mainlobe direction to improve the scanning capabilities of the array and increase the array effective area. In addition, for very large, conformed body structures such as space vehicles, a frontal mainlobe-oriented partial CSC4 array beamforming technique is proposed to efficiently utilize the large CSC4 structure, reduce the processing requirements for mainlobe electronic steering, and to provide very low sidelobe levels with reduced backlobe levels. Simulation results show that the proposed CSC4 design can provide wide scanning angles of up to ±70° angular range in the θ-direction with only ±1° change in the beamwidth, without increasing array size and with achievable sidelobe level of −45 dB and backlobe levels less than −10 dB.


2020 ◽  
Vol 10 (15) ◽  
pp. 5124
Author(s):  
Xiaochuan Niu ◽  
Liqiang Zhu ◽  
Zujun Yu

Cumulative second harmonic of ultrasonic guided waves is considered to have great application potential in evaluating internal stress of structures. One difficulty with the application is the diversity and complexity of modal response to the stress change in waveguide. At present, there is a lack of relevant theoretical studies and experimental results to guide the applications. In this article, a method is proposed to characterize the amplitude change of cumulative second harmonic mode in a plate under stress through calculating the amplitude coefficient, which can be acquired based on mode shape analysis. The steel plate is taken as an example to demonstrate the analysis method. Experimental studies are presented with results consistent with the theoretical predictions. The results of this study indicate that the amplitudes of different cumulative second harmonic modes may increase or decrease monotonically with the change of stress. Therefore, when the phenomenon of modes mixing occurs in the waveguide, it is necessary to analyze and predict the amplitude of selected cumulative second harmonic mode with the change of stress in advance; otherwise, wrong results may be obtained. The method and conclusions proposed in this paper can also be applicable to waveguide of arbitrary cross-section and have universality.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Ronggang Yang ◽  
Bo Han ◽  
Fengping Li ◽  
Yuqing Zhou ◽  
Jiawei Xiang

Abstract A trochoid cam gear (TCG) is a kind of precise transmission device with high performance, such as non-backlash, high-precision, low noise, etc. However, the nonlinear dynamics has not been studied. In the present paper, the nonlinear dynamic differential equation of the TCG is constructed. First, the trochoid equation and the tooth profile equation are deduced to satisfy the conditions of the continuous transmission. Second, a pure torsional nonlinear dynamic model is established to further construct the nonlinear model of the TCG according to a Lagrange equation. Finally, the dynamic characteristics of the TCG are investigated. For the short amplitude coefficient K, break of quasiperiodic torus is the main reason for the chaotic vibration. By increasing K, the performance of TCG can be improved to maintain stable motion.


2020 ◽  
Author(s):  
Zixuan Liu ◽  
Linghua Wang ◽  
Haobo Fu ◽  
Krucker Sam ◽  
Wimmer-Schweingruber Robert

<p>We propose a general fitting formula of energy spectrum of suprathermal particles, J=AE<sup>-β1</sup>[1+(E/E<sub>0</sub>)<sup>α</sup>]<sup>(β1-β2)/α</sup>, where J is the particle flux (or intensity), E is the particle energy, A is the amplitude coefficient, E<sub>0</sub> represents the spectral break energy, α (>0) describes the sharpness of energy spectral break around E<sub>0</sub>, and the power-law index β<sub>1</sub> (β<sub>2</sub>) gives the spectral shape before (after) the break.  When α tends to infinity (zero), this spectral formula becomes a classical double-power-law (logarithmic-parabola) spectrum. When both β<sub>2</sub> and E<sub>0</sub> tend to infinity, this formula can be simplified to an Ellison-Ramaty-like equation. Under some other specific parameter conditions, this formula can be transformed to a Kappa or Maxwellian function. Considering  the uncertainties both in particle intensity and energy, we fit this general formula well to the representative energy spectra of various suprathermal particle phenomena including solar energetic particles (electrons, protons,  <sup>3</sup>He and heavier ions), shocked particles, anomalous cosmic rays, hard X-rays, solar wind suprathermal particles, etc. Therefore, this general spectrum fitting formula would help us to comparatively examine the energy spectrum of different suprathermal particle phenomena and understand their origin, acceleration and transportation.</p>


2019 ◽  
Vol 34 (36) ◽  
pp. 1942004
Author(s):  
Shin Fujita

In the optimization of the quadrupole mass spectrometer (QP-MS), the understanding of ion motion in terms of the phase space (the combined representation of the trajectory coordinate and momentum) is useful. The phase space representation gives an “ensemble” behavior of ions inside the filter. Even though each ion trajectory does not have the RF periodicity of the applied field, the phase space evolution does. It is only when appropriate ensemble ions are considered together that a proper QP filter characterization is possible. We here report a new framework for the phase space calculation of the QP-MS. The Mathieu–Hill equation is first solved for “complex eigen-trajectory” that has pseudo RF periodicity (the Bloch function). It is then shown that the acceptance phase space can be derived from the Bloch function without a need to calculate each ion trajectory. The ensemble behavior of ions can be estimated from a single Bloch function by expressing the trajectory phase space point by the complex amplitude (coefficient) of the Bloch function. The application of the Bloch function method to the auxiliary (pre-rod) field reveals that the ion injection efficiency may significantly be improved by optimizing the number of RF periods the ions spend in the pre-rod section.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4774
Author(s):  
Yulong Wang ◽  
Xiaohong Zhang ◽  
Lili Li ◽  
Jinyang Du ◽  
Junguo Gao

Based on the principle of operating an oil-filled-cable operation and the explanation of the oil-filling process provided in the cable operation and maintenance manual of submarine cables, this study investigated oil-pressure variation caused by gas generated as a result of cable faults. First, a set of oil-filled cables and their terminal oil-filled simulation system were designed in the laboratory, and a typical oil-filled-cable fault model was established according to the common faults of oil-filled cables observed in practice. Thereafter, ultrasonic signals of partial discharge (PD) under different fault models were obtained via validation experiments, which were performed by using oil-filled-cable simulation equipment. Subsequently, the ultrasonic signal mechanism was analyzed; these signals were generated via electric, thermal, and acoustic expansion and contraction, along with electric, mechanical, and acoustic electrostriction. Finally, upon processing the 400 experimental data groups, four practical parameters—maximum amplitude of the ultrasonic signal spectrum, Dmax, maximum frequency of the ultrasonic signals, fmax, average ultrasonic signal energy, Dav, and the ultrasonic signal amplitude coefficient, M—were designed to characterize the ultrasonic signals. These parameters can be used for subsequent pattern recognition. Thus, in this study, the terminal PD of an oil-filled marine cable was monitored.


2019 ◽  
Vol 9 (12) ◽  
pp. 2572 ◽  
Author(s):  
Jijian Lian ◽  
Yan Zheng ◽  
Chao Liang ◽  
Bin Ma

During the flood discharge in large-scale hydraulic engineering projects, intense flow-induced vibrations may occur in hydraulic gates, gate piers, spillway guide walls, etc. Furthermore, the vibration mechanism is complicated. For the spillway guide wall, existing studies on the vibration mechanism usually focus on the vibrations caused by flow excitations, without considering the influence of dam vibration. According to prototype tests, the vibrations of the spillway guide wall and the dam show synchronization. Thus, this paper presents a new vibration mechanism of associated-forced coupled vibration (AFCV) for the spillway guide wall to investigate the dynamic responses and reveal coupled vibrational properties and vibrational correlations. Different from conventional flow-induced vibration theory, this paper considers the spillway guide wall as a lightweight accessory structure connected to a large-scale primary structure. A corresponding simplified theoretical model for the AFCV system is established, with theoretical derivations given. Then, several vibrational signals measured in different structures in prototype tests are handled by the cross-wavelet transform (XWS) to reveal the vibrational correlation between the spillway guide wall and the dam. Afterwards, mutual analyses of numeral simulation, theoretical derivation, and prototype data are employed to clarify the vibration mechanism of a spillway guide wall. The proposed mechanism can give more reasonable and accurate results regarding the dynamic response and amplitude coefficient of the guide wall. Moreover, by changing the parameters in the theoretical model through practical measures, the proposed vibration mechanism can provide benefits to vibration control and structural design.


Sign in / Sign up

Export Citation Format

Share Document