High-Efficiency Microcrystalline Silicon and Microcrystalline Silicon-Germanium Alloy Solar Cells

2011 ◽  
Vol 1321 ◽  
Author(s):  
Takuya Matsui ◽  
Michio Kondo

ABSTRACTThis paper presents our material studies on hydrogenated microcrystalline silicon (μc-Si:H) and microcrystalline silicon-germanium alloy (μc-Si1-xGex:H) thin films for the development of high efficiency p-i-n junction solar cells. In μc-Si:H solar cells, we have evaluated the structural properties of the intrinsic μc-Si:H layers grown by plasma-enhanced chemical vapor deposition at high deposition rates (>2 nm/s). Several design criteria for the device grade μc-Si:H are proposed in terms of crystallographic orientation, grain size and grain boundary passivation. Meanwhile, in μc-Si1-xGex:H solar cells, we have succeeded in boosting the infrared response of solar cell upon Ge incorporation up to x∼0.2. Nevertheless, a degradation of solar cell parameters is observed for large Ge contents (x>0.2) and thick i-layers (> 1 μm), which is attributed to the influence of the Ge dangling bonds that act as acceptorlike states in undoped μc-Si1-xGex:H. To improve the device performance, we introduce an oxygen doping technique to compensate the native defect acceptors in μc-Si1-xGex:H p-i-n solar cells.

2004 ◽  
Vol 808 ◽  
Author(s):  
Takuya Matsui ◽  
Akihisa Matsuda ◽  
Michio Kondo

ABSTRACTThis paper presents microcrystalline silicon (μ c-Si:H) p-i-n (superstrate-type) solar cells fabricated by 100 MHz plasma-enhanced chemical vapor deposition (PECVD) at i-layer deposition rates of >2 nm/s. Under high-rate conditions, in particular, the deposition pressure is found to play a dominant role in determining short circuit current (Jsc) of solar cell. With anincrease in deposition pressure from 3 to 7-9 Torr, Jsc increases by more than 50% due to a significant improvement in the long wavelength (>600 nm) responses, which essentially leads to high efficiency (∼8%) solar cells in the 2-3 nm/s deposition rate range. Further progress in solar cell efficiency has been made by the improvement of TCO/p and p/i interfaces. As a result, efficiency reaches 9.13% (Jsc=23.7 mA/cm2,Voc=0.528 V,FF=0.73) with a 2.3μm-thick i-layer grown at 2.3 nm/s. Transmission electron microscopy and secondary-ion mass spectroscopy studies reveal that samples prepared at lower pressure (∼4 Torr) comprise many grain boundaries due to disordered grain growth, which induces an anomalous incorporation of atmospheric impurities (predominantly oxygen) after exposing sample to air. In contrast, the high-pressure process (<7 Torr) provides denser grain columns coalesced with [110]-oriented crystallites, which in turn inhibits impurities from penetrating deeper in the film. Based on above results, we propose that the less post-oxidation behavior associated with the denser microstructure of high-pressure-grown μc-Si:H is responsible for the excellent charge collection in p-i-n solar cells.


Author(s):  
Samer H. Zyoud ◽  
Ahed H. Zyoud ◽  
Naser M. Ahmed ◽  
Anupama R. Prasad ◽  
Sohaib Naseem Khan ◽  
...  

This article describes in detail the numerical modeling of a CZTS (copper zinc tin sulfide) based kesterite solar cell. The Solar Cell Capacitance Simulator -one-dimension (SCAPS-1D) software was used to simulate MO/CZTS/CdS/ZnO/FTO structured solar cells. The parameters of different photovoltaic thin-film solar cells are estimated and analyzed using numerical modeling. The effects of various parameters on the performance of the photovoltaic cell and the conversion efficiency are discussed. Since the response of the solar cell is also contingent on its internal physical mechanism, J-V characteristic measures are insufficient to characterize the behavior of a device. Different features, as well as different potential conditions, must be considered for simulation, disregarding the belief in the modeling of a solar cell. With a conversion efficiency of 25.72%, a fill factor of 83.75%, a short-circuit current of 32.96436 mA/cm2 and an open-circuit voltage of 0.64V, promising optimized results have been achieved. The findings will be useful in determining the feasibility of fabricating high-efficiency CZTS-based photovoltaic cells. The efficiency of a CZTS-based experimental solar cell is also discussed. First, the effects of experimentally developed CZTS solar cells are simulated in the SCAPS-1D environment. The experimental results are then compared to the SCAPS-1D simulated results. The conversion efficiency of an optimized system increases after cell parameters are optimized. Using one-dimensional SCAPS-1D software, the effect of system parameters such as the thickness, acceptor and donor carrier concentration densities of absorber and electron transport layers, and the effect of temperature on the efficiency of CZTS-based photovoltaic cells is investigated. The proposed results will greatly assist engineers and researchers in determining the best method for optimizing solar cell efficiency, as well as in the development of efficient CZTS-based solar cells.


2002 ◽  
Vol 715 ◽  
Author(s):  
S. Klein ◽  
F. Finger ◽  
R. Carius ◽  
B. Rech ◽  
L. Houben ◽  
...  

AbstractThin film microcrystalline silicon solar cells were prepared with intrinsic absorber layers by Hot Wire CVD at various silane concentrations and substrate temperatures. Independently from the substrate temperature, a maximum efficiency is observed close to the transition to amorphous growth, i.e. the best cells already show considerable amorphous volume fractions. A detailed analysis of the thickness dependence of the solar cell parameters in the dark and under illumination indicate a high electronic quality of the i-layer material. Solar cells with very high open circuit voltages Voc up to 600mV in combination with fill factors above 70% and high short circuit current densities jsc of 22mA/cm2 were obtained, yielding efficiencies above 9%. The highest efficiency of 9.4% was achieved in solar cells of 1.4μm and 1.8μm thickness. These cells with high Voc have considerable amorphous volume fractions in the i-layer, leading to a reduced absorption in the infrared wavelength region.


2014 ◽  
Vol 1666 ◽  
Author(s):  
Takuya Matsui ◽  
Adrien Bidiville ◽  
Hitoshi Sai ◽  
Takashi Suezaki ◽  
Mitsuhiro Matsumoto ◽  
...  

ABSTRACTWe show that high-efficiency and low-degradation hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells can be obtained by depositing absorber layers in a triode-type plasma-enhanced chemical vapor deposition (PECVD) process. Although the deposition rate is relatively low (0.01-0.03 nm/s) compared to the conventional diode-type PECVD process (∼0.2 nm/s), the light-induced degradation in conversion efficiency of single-junction solar cell is substantially reduced (Δη/ηini∼10%) due to the suppression of light-induced metastable defects in the a-Si:H absorber layer. So far, we have attained an independently-confirmed stabilized efficiency of 10.11% for a 220-nm-thick a-Si:H solar cell which was light soaked under 1 sun illumination for 1000 hours at cell temperature of 50°C. We further demonstrate that stabilized efficiencies as high as 10% can be maintained even when the solar cell is thickened to >300 nm.


2015 ◽  
Vol 37 ◽  
pp. 434 ◽  
Author(s):  
Razagh Hafezi ◽  
Soroush Karimi ◽  
Sharie Jamalzae ◽  
Masoud Jabbari

“Micromorph” tandem solar cells consisting of a microcrystalline silicon bottom cell and an amorphous silicon top cell are considered as one of the most promising new thin-film silicon solar-cell concepts. Their promise lies in the hope of simultaneously achieving high conversion efficiencies at relatively low manufacturing costs. The concept was introduced by IMT Neuchâtel, based on the VHF-GD (very high frequency glow discharge) deposition method. The key element of the micromorph cell is the hydrogenated microcrystalline silicon bottom cell that opens new perspectives for low-temperature thin-film crystalline silicon technology. This paper describes the use, within p–i–n- and n–i–p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (_c-Si:H) thin films (layers), both deposited at low temperatures (200_C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. Finally, present performances and future perspectives for a high efficiency ‘micromorph’ (mc-Si:Hya-Si:H) tandem solar cells are discussed.


1996 ◽  
Vol 452 ◽  
Author(s):  
H. Keppner ◽  
P. Torres ◽  
J. Meier ◽  
R. Platz ◽  
D. Fischer ◽  
...  

AbstractIn the past, microcrystalline silicon (μc-Si:H) has been successfully used as active semiconductor in entirely μc-Si:H p-i-n solar cells and a new type of tandem solar cell, called the “micromorph” cell, was introduced [1]. Micromorph cells consist of an amorphous silicon top cell and a microcrystalline bottom cell. In the paper a micromorph cell with a stable efficiency of 10.7 % (confirmed by ISE Freiburg) is reported.Among sofar existing crystalline silicon-based solar cell manufacturing techniques, the application of microcrystalline silicon is a new promising way towards implementing thin-film silicon solar cells with a low temperature deposition. Microcrystalline silicon can, indeed, be deposited at temperatures as low as 220°C; hence, the way is here open to use cheap substrates as, e.g. plastic or glass. In the present paper, the development of single and tandem cells containing microcrystalline silicon is reviewed. As stated in previous publications, microcrystalline silicon technique has at present a severe drawback that has yet to be overcome: Its deposition rate for solar-grade material is about 2Å/s; in a more recent case 4.3 Å/s [2] could be obtained. In the present paper, using suitable mixtures of silane, hydrogen and argon, deposition rates of 9.4 Å/s are presented. Thereby the dominating plasma mechanism and the basic properties of resulting layers are described in detail. A first entirely microcrystalline cell deposited at 8.7 Å/s has an efficiency of 3.15%.


2011 ◽  
Vol 287-290 ◽  
pp. 1259-1262
Author(s):  
Jin Song Lei ◽  
Yin Sheng Zou ◽  
Zhao Qiang Zhang

Nip type flexible a-Si solar cells for application in building integrated photovoltaics (BIPV) were deposited by plasma enhanced chemical vapor deposition (PECVD) method. In order to improve the efficiency and stability of the device, p-type microcrystalline silicon (μc-Si:H) film was used as the window layers. H plasma treatment was applied on the p/i interface and nucleation layer was introduced to enhance the deposition of p-type μc-Si:H film on the surface of a-Si:H. Results suggest that with the application of H plasma treatment and the nucleation layer introduction, high quality p-type μc-Si:H film and high efficiency flexible solar cells were obtained.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Guofu Hou ◽  
Xiaoyan Han ◽  
Changchun Wei ◽  
Xiaodan Zhang ◽  
Guijun Li ◽  
...  

AbstractHigh rate deposition of hydrogenated microcrystalline silicon (μc-Si:H) films and solar cells were prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) process in a high power and high pressure regime. The experiment results demonstrate that in high-rate deposited μc-Si:H films, the structural evolution is much more dramatic than that in low-rate deposited μc-Si:H films. A novel VHF power profiling technique, which was designed by dynamically decreasing the VHF power step by step during the deposition of μc-Si:H intrinsic layers, has been developed to control the structural evolution along the growth direction. Another advantage of this VHF power profiling technique is the reduced ion bombardments on growth surface because of decreasing the VHF power. Using this method, a significant improvement in the solar cell performance has been achieved. A high conversion efficiency of 9.36% (Voc=542mV, Jsc=25.4mA/cm2, FF=68%) was obtained for a single junction μc-Si:H p-i-n solar cell with i-layer deposited at deposition rate over 10 �/s.


Sign in / Sign up

Export Citation Format

Share Document